DOI: https://doi.org/10.32515/2664-262X.2025.11(42).1.179-189

Changing the Stress-strain State of the Working Surface of a Part with an Antifriction Coating

Ihor Shepelenko, Artem Krasota, Mykhailo Krasota

About the Authors

Igor Shepelenko, Professor, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kntucpfzk@gmail.com, ORCID ID: 0000-0003-1251-1687

Artem Krasota, post-graduate, Центральноукраїнський національний технічний університет, м. Кропивницький, Україна

Mykhailo Krasota, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: krasotamv@ukr.net, ORCID ID: 0000-0001-6879-7624

Abstract

The article deals with the issue of increasing the durability of the camshaft of an internal combustion engine by improving the operational properties of cams. It is determined that by studying the stress-strain state of individual elements of a part, it is possible to solve a number of technological problems. Taking into account that in most cases the destruction of a part begins from its surface, the stress-strain state of the surface layer has a significant impact on the operational properties of parts. The study of the parameters of the stress-strain state on the working surface of the cam of the camshaft of an internal combustion engine was carried out by modelling using the finite element method. The model takes into account the design features of the camshaft, the operating conditions of the cam-pusher connection, and the forces acting in the gas distribution mechanism at the moment of valve opening. To adequately reproduce the loads in the details of the studied assembly, a finite element model of the camshaft was created, with the camshaft journals in contact with the bushings and the cams in contact with one of the pushrods. The calculation results confirmed that it is in the cam-pusher contact zone that the maximum stress values are observed. To determine the ways to improve the operational properties of the working surfaces of cams, the parameters of the stress-strain state of the base cam and the cam with an antifriction coating applied by finishing antifriction non-abrasive treatment were investigated. It was found that the maximum stress is about 60 MPa for the uncoated cam and about 37 MPa for the cams with antifriction coatings. In addition, a change in the shape of the diagram was recorded: in the cams with antifriction coatings, the stresses are more evenly applied in the contact patch. The improvement in the stress state of the cams can be explained by the presence of an antifriction coating, which reduces not only the friction coefficient but also serves as a solid lubricant. The obtained regularities allow us to assert the expediency of finishing antifriction non-abrasive treatment of cams when solving the issue of increasing the durability of the camshaft.

Keywords

camshaft, gas distribution mechanism, cam-pusher connection, finite element model, stress-strain state, wear resistance, antifriction coating

Full Text:

PDF

References

1. Márquez-Cortés, R., Martínez-Trinidad, J., Flores-Martínez, M. et al. Sliding Wear Resistance of Borided AISI 4140 Steel. J. of Materi Eng and Perform 32, 9101–9113 (2023). https://doi.org/10.1007/s11665-022-07773-6.

2. Kislikov, V.F., Lushchik, V.V. (2006). Budova y ekspluatatsiia avtomobiliv [Structure and operation of cars]. Kyiv: Lybid, 400 s [in Ukrainian].

3. Syrota, V.I. (2005). Osnovy konstruktsii avtomobiliv [Fundamentals of car design]. Kyiv: Arystei, 280 s [in Ukrainian].

4. Shypunov, M. V. (2013). Optimising the operation of the gas distribution mechanism of an internal combustion engine. Zbirnyk naukovykh prats Poltavskoho natsionalnoho tekhnichnoho universytetu imeni Yu. Kondratiuka. Seriia: Haluzeve mashynobuduvannia, budivnytstvo. Vyp. 1(2). 166–175 [in Ukrainian].

5. Tymofieiev, S.S., Leniv, Ya.H. (2014). Modern requirements to the methods of restoring camshafts of transport diesel engines. Materialy Mizhnarodnoi naukovo-tekhnichnoi konferentsii «Inzheneriia poverkhni ta renovatsiia vyrobiv». Yalta. Kyiv: ATM Ukrainy. 131–132 [in Ukrainian].

6. Frolov, Ye.A., Kravchenko, S.I., Popov, S.V., Hnitko, S.M. (2019). Technological support for the quality of engineering products. Poltava, 201. [in Ukrainian].

7. Kravchenko, S.A., Posviatenko, E.K., D´iachenko, S.S. et al. (2011). Numerical justification of parameters of discrete strengthening of highly loaded machine parts. Visnyk Natsionalnoho tekhnichnoho universytetu „KhPI”. 111–136 [in Ukrainian].

8. Tkachuk, M.A., Kravchenko, S.O., Shpakovskyi, V.V. (2015). Development of methods for strengthening the most stressed parts is the way to improve the technical and tactical characteristics of machines. Visnyk Natsionalnoho tekhnichnoho universytetu „KhPI”. № 43 (1152). 116–122 [in Ukrainian].

9. Rudyk, O., Dytyniuk, V., Stebeletska, N. (2019). Modeling of working conditions and wear resistance of the vehicle’s clutch shaft. Problems of Tribology, 90(4), 70–79 [in Ukrainian].

10. Shepelenko, I., Nemyrovskyi, Y., Lizunkov, O., Vasylenko, I., Osin, R. (2023). The Stress-Deformed State of the Cylinder Liner’s Working Surface. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Rauch, E., Piteľ, J. (eds) Advances in Design, Simulation and Manufacturing VI. DSMIE 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. рр. 347-355. https://doi.org/10.1007/978-3-031-32767-4_33.

11. Shepelenko, I., Nemyrovskyi, Y., Stepchyn, Y., Mahopets, S., Melnyk, O. (2024). Creation of a Combined Technology for Processing Parts Based on the Application of an Antifriction Coating and Deforming Broaching. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 209-218. https://doi.org/10.1007/978-3-031-42778-7_19.

12. Patil, V.S., Takale, A.M. (2024). Design and Analysis of Cylinder Head Gasket Under Engine Cold Assembly and Cold Start Condition. In: Sahu, R., Prasad, R., Sahoo, K.L. (eds) Advancements in Materials Processing Technology, Volume 1. AMPT 2023. Springer Proceedings in Materials, vol 48. Springer, Singapore. https://doi.org/10.1007/978-981-97-4958-4_29.

13. Gontarovskyi, P.P., Smetankina, N.V., Garmash, N.G. et al. Three-Dimensional Stress-Strain State Analysis of the Bimetallic Launch Vehicle Propellant Tank Shell. Strength Mater 55, 916–926 (2023). https://doi.org/10.1007/s11223-023-00582-9.

14. Matvienko, M.V., Martynenko, V.O. & Vakhonina, L.V. (2023). Stress–Strain State of Joints with a Soft Interlayer Under Mechanical Loading. Int Appl Mech 59, 100–106. https://doi.org/10.1007/s10778-023-01203-3.

15. Voitov, V.A., Kravtsov, A.H. (2011). Tribological properties of technical oils based on sunflower and rapeseed oils. Problems of Tribology, 4, 87–92 [in Ukrainian].

16. SolidWorks. https://www.solidworks.com.

Citations

1. Márquez-Cortés, R., Martínez-Trinidad, J., Flores-Martínez, M. et al. Sliding Wear Resistance of Borided AISI 4140 Steel. J. of Materi Eng and Perform 32, 9101–9113 (2023). DOI: https://doi.org/10.1007/s11665-022-07773-6

2. Кисликов В.Ф., Лущик В.В. Будова й експлуатація автомобілів. К.: Либідь, 2006. 400 с.

3. Сирота В.І. Основи конструкції автомобілів. К.: Аристей, 2005. 280 с.

4. Шипунов М. В. Оптимізація роботи газорозподільного механізму двигуна внутрішнього згоряння. Збірник наукових праць Полтавського національного технічного університету ім. Ю. Кондратюка. Сер.: Галузеве машинобудування, будівництво. 2013. Вип. 1(2). С. 166–175. http://nbuv.gov.ua/UJRN/Znpgmb_2013_1%282%29__21

5. Тимофєєв С.С., Ленів Я.Г. Сучасні вимоги до способів відновлення розподільних валів транспортних дизелів. Матеріали Міжнародної науково-технічної конференції «Інженерія поверхні та реновація виробів». 02–06 черв. 2014 р. Ялта. Київ: АТМ України, 2014. С. 131–132.

6. Фролов Є.А., Кравченко С.І., Попов С.В., Гнітько С.М. Технологічне забезпечення якості продукції машинобудування: Монографія. Полтава, 2019. 201 с.

7. Кравченко С.А., Посвятенко Е.К., Д´яченко С.С. та ін. Числове обґрунтування параметрів дискретного зміцнення високонавантажених деталей машин. Вісник Національного технічного університету „ХПІ”. 2011. № 51. С. 111–136.

8. Ткачук М.А., Кравченко С.О., Шпаковський В.В. Розвиток методів зміцнення найбільш навантажених деталей – шлях до підвищення технічних і тактико-технічних характеристик машин. Вісник Національного технічного університету „ХПІ”. 2015. № 43 (1152). С. 116–122.

9. Рудик О., Дитинюк В., Стебелецька Н. Моделювання умов роботи і зносостійкості валу зчеплення двигуна транспортного засобу. Проблеми трибології. 2018. № 90(4). С. 70–79.

10. Shepelenko, I., Nemyrovskyi, Y., Lizunkov, O., Vasylenko, I., Osin, R. (2023). The Stress-Deformed State of the Cylinder Liner’s Working Surface. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Rauch, E., Piteľ, J. (eds) Advances in Design, Simulation and Manufacturing VI. DSMIE 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. рр. 347-355. https://doi.org/10.1007/978-3-031-32767-4_33

11. Shepelenko, I., Nemyrovskyi, Y., Stepchyn, Y., Mahopets, S., Melnyk, O. (2024). Creation of a Combined Technology for Processing Parts Based on the Application of an Antifriction Coating and Deforming Broaching. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 209-218. https://doi.org/10.1007/978-3-031-42778-7_19

12. Patil, V.S., Takale, A.M. (2024). Design and Analysis of Cylinder Head Gasket Under Engine Cold Assembly and Cold Start Condition. In: Sahu, R., Prasad, R., Sahoo, K.L. (eds) Advancements in Materials Processing Technology, Volume 1. AMPT 2023. Springer Proceedings in Materials, vol 48. Springer, Singapore. https://doi.org/10.1007/978-981-97-4958-4_29

13. Gontarovskyi, P.P., Smetankina, N.V., Garmash, N.G. et al. Three-Dimensional Stress-Strain State Analysis of the Bimetallic Launch Vehicle Propellant Tank Shell. Strength Mater 55, 916–926 (2023). https://doi.org/10.1007/s11223-023-00582-9

14. Matvienko, M.V., Martynenko, V.O. & Vakhonina, L.V. Stress–Strain State of Joints with a Soft Interlayer Under Mechanical Loading. Int Appl Mech 59, 100–106 (2023). https://doi.org/10.1007/s10778-023-01203-3

15. Войтов В.А., Кравцов А.Г. Трибологічні властивості технічних олив на базі соняшникової та ріпакової олій. Проблеми трибології. 2011. № 4. С. 87–92.

16. SolidWorks. URL: https://www.solidworks.com (дата звернення: 05.03.2025).

Copyright (c) 2025 Ihor Shepelenko, Artem Krasota, Mykhailo Krasota