DOI: https://doi.org/10.32515/2664-262X.2022.5(36).2.39-50

Improving the Productivity of the Casting Process by Regulating the Thermal Regime of the Chill Mold on a Basis of Computer Investigation of the Air Flow in the Channels of the Casting Core

Serhii Kononchuk, Oleksandr Skrypnyk, Volodymyr Sviatskyi, Viktor Pukalov

Serhii Kononchuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kononchuk_s@ukr.net, , ORCID ID: 0000-0002-6683-8450

Oleksandr Skrypnyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: skripnik1966@ukr.net, ORCID ID: 0000-0003-1479-3120

Volodymyr Sviatskyi, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: svv_iamph@ukr.net, ORCID ID: 0000-0002-5889-8875

Viktor Pukalov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: pukalovvictor@gmail.com, ORCID ID: 0000-0002-0848-5861

Abstract

The most common technology for the manufacture of aluminum parts and blanks is casting in a chill mold. To determine ways to improve casting technology, it is necessary to analyze the possibility of changing the parameters that affect the reduction of production costs (reduction of energy consumption, material consumption, increase productivity) and improve the quality of casting. The thermal regime of the metal form determines the productivity of the process, the duration of curing of the casting, its quality, durability of the chill mold. The analysis of the work of the chill mold for the manufacture of castings Pump Housing showed that when the forms are filled, the most heated new portions of metal meet on their way to the central core. That is, when pouring the mold, the central core is heated the most, especially in the lower part. This circumstance hinders the process of directed curing and can lead to shrinkage defects. In addition, the higher the temperature of the mold, the slower the casting will crystallize and the worse its structure and mechanical properties will be. Based on the analysis of structures and methods of cooling molds, the method of controlled cooling of the central core by air is substantiated. A new design of the core has been developed, which provides adjustable air cooling of the chill mold by connecting the central core through a valve to the pneumatic system of the shop. 3D-models of details and assembly drawings of the central core of a new design are developed. A computer study of the air flow in the core channels in SolidWorks Flow Simulation was performed. The results of parametric modeling of air flow in the channels of the Central core showed the maximum air flow rate during cooling 0.371 kg / s, the heat content of air when cooled 25081 J / s. Evaluation of the cooling efficiency of the developed chill mold design showed that when using air cooling of the central core with cooling air at its maximum consumption, 41% of heat is removed. Thus, the developed design of the cooled central core allows to increase the productivity of the casting process, improve the quality of casting by improving the structure and mechanical properties of the casting, as well as increase the life of the chill mold. But the obtained research results are of a recommendatory nature and require practical verification in the production environment. In addition, the simulation did not take into account the change in core temperature due to its heat exchange with the melt. Given all this, there is a need for further study of the effect of regulated air cooling on the thermal regime of the chill mold.

Keywords

chill mold, casting, directional crystallization, cooling, thermal conductivity, heat capacity, heat flux, 3D-model, computer simulation

Full Text:

PDF

References

1. Kononchuk, S.V. & Pukalov, V.V. (2018). Udoskonalennia tekhnolohichnoho protsesu lyttia v kokil aliuminiievykh splaviv [Improving the technological process of casting aluminum alloys in the chill mold]. Casting – 2018: 14 Mizhnarodna naukovo-praktychna konferentsiia – International Scientific and Practical Conference. (pp. 119 – 120). Zaporizhzhia [in Ukraine].

2. Kononchuk, S.V., Skrypnyk, O.V., Sviatskyi, V.V. & Pukalov, V.V (2021). Pidvyshchennia produktyvnosti protsesu lyttia aliuminiievykh splaviv na osnovi doslidzhennia teplovoho rezhymu kokilia [Improving the productivity of the process of casting aluminum alloys based on the investigation of the thermal regime of the chill mold]. Casting – 2021: 17 Mizhnarodna naukovo-praktychna konferentsiia – International Scientific and Practical Conference. (pp. 107 – 111). Zaporizhzhia [in Ukraine].

3. Churkin, B.S., Churkin, A.B. & Kategorenko, Yu.I. (2012). Spetsialnyye sposoby litia [Special casting methods]. Ekaterinburg [in Russian].

4. Efimov, V.A., Anisovich, G.A., Babich, V.N. et al. (1991). Spetsialnyye sposoby litia [Special casting methods]. V.A. Efimov (Ed.). Moscow: Mashinostroenie [in Russian].

5. Svyatkin, B.K. & Egorova, M.B. (1989). Proizvodstvo otlivok v kokili [Production of castings in chill molds]. Moscow: Vyssh. shk. [in Russian].

6. Kazantsev, S.P. & Furman, E.L. (2017). Spetsialnyye vidy litia. Chast 3. Litye v kokil, klassifikatsiya metallicheskikh form, konstruktsii po priznakam i raznovidnostyam [Special types of casting. Part 3. Casting in a chill mold, classification of metal forms, designs by features and varieties]. Ekaterinburg [in Russian].

7. Kononchuk, S.V., Skrypnyk, O.V., Sviatskyi, V.V. & Pukalov, V.V. (2020). Doslidzhennia vplyvu konstruktsii shlakovlovliuvacha na efektyvnist zatrymky shlaku v seredovyshchi parametrychnoho modeliuvannia SolidWorks Flow Simulation [Investigation of the Effect of Slag Trap Design on Slag Delay Efficiency in the SolidWorks Flow Simulation parametric Modeling Environment]. Tsentralnoukrainskyi naukovyi visnyk: Tekhnichni nauky – Central Ukrainian Sientific Bulletin: Technical Sciences. Vol. 3(34), 108-117 [in Ukraine].

8. Alyamovskiy, A.A. (2015). SolidWorks Simulation. Inzhenernyy analiz dlya professionalov: zadachi, metody, rekomendatsii [SolidWorks Simulation. Engineering Analysis for Professionals: Tasks, Methods, Recommendations]. Moscow: DMK Press [in Russian].

9. Sabirzianov, T.H. & Kropivnyi, V.M. (2005). Teplotekhnika lyvarnykh protsesiv [Heat engineering of foundry processes]. Kirovohrad: KNTU [in Ukraine].

GOST Style Citations

  • Конончук С.В., Пукалов В.В. Удосконалення технологічного процесу лиття в кокіль алюмінієвих сплавів. Литво – 2018: ХІV Міжнар. наук.-практ. конф. Запоріжжя : АА Тандем, 2018. С. 119-120.
  • Підвищення продуктивності процесу лиття алюмінієвих сплавів на основі дослідження теплового режиму кокіля / Конончук С.В., Скрипник О.В., Свяцький В.В., Пукалов В.В. Литво – 2021: ХVІІ Міжнар. наук.-практ. конф. Запоріжжя : АА Тандем, 2021. C. 107-111.
  • Чуркин Б.С., Чуркин А.Б., Категоренко Ю.И. Специальные способы литья : учебно-методическое пособие. Екатеринбург : Изд-во Рос. гос. проф.-пед. ун-та, 2012. 189 с.
  • Специальные способы литья : справочник / В.А. Ефимов, Г.А. Анисович, В.Н. Бабич и др. ; под общ. ред. В.А. Ефимова. М.: «Машиностроение», 1991. 436 с.
  • Святкин Б.К., Егорова М.Б. Производство отливок в кокили : учеб. для ПТУ. М.: Высш. шк., 1989. 223 с.
  • Казанцев С.П., Фурман Е.Л. Специальные виды литья. Часть 3. Литье в кокиль, классификация металлических форм, конструкции по признакам и разновидностям : учеб. пособие. Екатеринбург: УрФУ, 2017. 107 с.
  • Дослідження впливу конструкції шлаковловлювача на ефективність затримки шлаку в середовищі параметричного моделювання SolidWorks Flow Simulation / Конончук С.В., Скрипник О.В., Свяцький В.В., Пукалов В.В. Центральноукраїнський науковий вісник: Технічні науки. 2020. Вип. 3(34). С. 108-117.
  • Алямовский А.А. SolidWorks Simulation. Инженерный анализ для профессионалов: задачи, методы, рекомендации. М.: ДМК Пресс, 2015. 562 с.
  • Сабірзянов Т.Г., Кропівний В.М. Теплотехніка ливарних процесів : навч. посібник для студентів-ливарників. Кіровоград: КНТУ, 2005. 402с.
  • Copyright (c) 2022 Serhii Kononchuk, Oleksandr Skrypnyk, Volodymyr Sviatskyi, Viktor Pukalov