DOI: https://doi.org/10.32515/2664-262X.2022.5(36).1.144-154
Stress State of Flexible Plates with a Hole
About the Authors
Larysa Kryvoblotska, Associate Professor, PhD in Physics and Mathematics (Candidate of Physics and Mathematics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: krivoblotsky19@gmail.com, ORCID ID: 0000-0002-3255-2884
Abstract
The article is dedicated to solving of problems of nonlinear mechanics of plates and shells – problems about stress-deformed state of flexible plates with hole under action of moment loading on “infinity”.
Solve of problems is offered to find with method of expansion of parameter of the external loading. During the solving was determined, that the value of bending and power descriptions unlimitedly increase at breaking from the edge of hole. For elaboration of regularization methods was conducted the survey and analysis of problems from different fields of mechanics. On the basis of this survey was formed the new approach to the solving of problem of regularization: it is offered to change the usual notions about particular sum of series and methods of their summing. It is created such methods of linear and nonlinear summing, when in summable functions the arbitrary parameters and functions enter. On basis of this method was solved the new geometrical-nonlinear problems of plates and shells mechanics in nonaxes-symmetrical axes-symmetrical arrangement about bending on “infinity” with moment loading of plates with hole. It is established, that the finding numeral data, diagrams do not conflict with the usual notions about stress-deformed conditions of plates with hole; definite mechanical effects are got. The methods of regularization are approved on test problems.
It is grounded mathematically, that the got solutions to equilibrium equations with some asymptotical exactness and exactly to the linear limit conditions, if the operators of initial problem will be polylinear.
Keywords
dimensionless parameter, geometric nonlinearity, flexible plate with a hole, deflections, stress function
Full Text:
PDF
References
1. Kaiuk, Ya.F. & Alekseieva, M.K. (1979). O metode razlozheniia po parametru v zadachakh izgiba gibkikh plastin i obolochek [On the parameter expansion method in the problems of planes and shells bending]. Prykladna mekhanika – Applied Mechanics, 8, 63-68 [in Russian].
2. Kaiuk, Ya.F. & Vashchenko, L.F. (1980). Geometricheski nelineinoie deformirovaniie miahkikh obolochek pod nesimmetrichnoi nagruzkoi [Geometrically nonlinear deformation of soft shells under asymmetric load]. Prykladnaia mekhanika – Applied Mechanics, 8, 16-23 [in Russian].
3. Kaiuk, Ya.F. & Khyzhniak, V.K. (1981). Metod kvazilinearizatsii v nekotorykh nelineinykh zadachakh mekhaniki [Method of quasi-linearization in some nonlinear problems of mechanics]. Prykladnaia mekhanika – Applied Mechanics, 5, 25-32 [in Russian].
4. Kaiuk, Ya.F. & Krivoblotskaya, L.N. (2002). Metod regularizatsii singuliarnykh iteratsii v nelineinykh zadachakh izgiba plastin s otverstiiem [Method of regularization of singular iterations in nonlinear problems of bending of plates with a hole]. Visnyk Donetskoho universytetu – Bulletin of Donetsk University, ser. A: Pryrodnychi nauky – Natural Sciences, issue 1, 83-90 [in Russian].
5. Kaiuk, Ya.F. & Krivoblotskaya, L.N. (2002). Kontsentratsiya momentov v okrestnosti kruglogo otvestiya plastiny pri bol'shikh izgibakh [The concentration of moments in the vicinity of the round hole of the plate at large bends]. Visnyk Donetskoho universytetu – Bulletin of Donetsk University, ser. A: Pryrodnychi nauky – Natural Sciences, issue 2, 187-191 [in Russian].
6. Kaiuk, Ya.F. & Krivoblotskaya, L.N. (2002). Singulyarnyie iteratsii v nelineynykh zadachakh kontsentratsii napryazheniy [Singular Iterations in Nonlinear Stress Concentration Problems]. Teoreticheskaia i prikladnaia mekhanika – Theoretical and Applied Mechanics, issue 36, 98-108 [in Russian].
7. Hardy, G. (1951). Raskhodiashchiiesia riady [Divergent Series]. Moscow: Izdatelstvo inostrannoi literatury [in Russian].
8. Tikhonov, A.N. & Arsenin, V.Ya. (1986) Metody resheniya nekorrektnykh zadach [Methods for incorrect problems solving]. Moscow: Fizmatgiz [in Russian].
9. Savin, G.N. & Guz, A.N., Tsurpal I.A. (1966). Fizicheski nelineinyie zadachi plastin i obolochek, oslablennykh otverstiiami [Physically nonlinear problems of plates and shells weakened by holes//Proceedings of the school on nonlinear problems]. Tartu: Izdatelstvo Tartusskogo universiteta [in Russian].
10. Savin, G.N. & Fleishman (N.d.). Plastinki i obolochki s riobrami zhestkosti [Plates and shells with stiffening ribs]. Kyiv: Naukova dumka [in Russian].
11. Savin, G.M. & Tulchii, V.I. (1976). Dovidnyk z kontsentratsii napruzhen [Stress Concentration Handbook]. Kyiv: Vyshcha shkola [in Ukrainian].
12. Dryden, H. & Karman, T. (Eds.). (1959). Problemy mekhaniki [Problems of mechanics]. Moscow: Izdatelstvo inostrannoi literatury [in Russian].
13. Poincare, A. (1971). Novyie metody nebesnoi mekhaniki. Izbrannyie trudy [New methods of celestial mechanics. Selected works]. (Vol. I). Moscow: Nauka [in Russian].
14. Poincare, A. (1965). Lektsii po nebesnoi mekhanike [Lectures on celestial mechanics]. Moscow: Nauka [in Russian].
15. Kravchuk, M. (2000). Vplyv Eilera na podalshyi rozvytok matematyky [The influence of Euler on the further development of mathematics]. Kyiv: vydavnytstvo Vseukrainskoi Akademii nauk [in Ukrainian].
GOST Style Citations
Каюк Я.Ф., Алексеева М.К. О методе разложения по параметру в задачах изгиба гибких пластин и оболочек . Прикладна механіка. 1979. 15, № 8. С. 63-68.
Каюк Я.Ф., Ващенко Л.Ф. Геометрически нелинейное деформирование мягких оболочек под несимметричной нагрузкой . Прикладная механика. 1980. 16, № 8. С. 16-23.
Каюк Я.Ф., Хижняк В.К. Метод квазилинеаризации в некоторых нелинейных задачах механики . Прикладная механика. 1981. 17, № 5. С. 25-32.
Каюк Я.Ф., Кривоблоцкая Л.Н. Метод регуляризации сингулярных итераций в нелинейных задачах изгиба пластин с отверстием . Вісник Донецького університету, Сер. А: Природничі науки. 2002. Вип. 1. С. 83-90.
Каюк Я.Ф., Кривоблоцкая Л.Н. Концентрация моментов в окрестности круглого отвестия пластины при больших изгибах . Вісник Донецького університету, Сер. А: Природничі науки. 2002. Вип. 2. С. 187-191.
Каюк Я.Ф., Кривоблоцкая Л.Н. Сингулярные итерации в нелинейных задачах концентрации напряжений . Теорет. и прикладная механика. 2002. Вып. 36. С.98-108.
Харди Г. Расходящиеся ряды. М.: Издательство иностранной литературы, 1951. 273 с.
Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Физматгиз, 1986. 287 с.
Савин Г.Н., Гузь А.Н., Цурпал И.А. Физически нелинейные задачи пластин и оболочек, ослабленных отверстиями . Труды школы по нелинейным задачам. Тарту: Изд-во Тартусского ун-та, 1966. С. 204-234.
Савин Г.Н., Флейшман Н.П. Пластинки и оболочки в рёбрами жесткости. Киев: Наукова думка. 383 с.
Савін Г.М., Тульчій В.І. Довідник з концентрації напружень. Київ: Вища школа, 1976. 410 с.
Проблемы механики: сб. статей ; под ред. Х. Драйдена, Т. Кармана. М.: Изд-во иностр. лит, 1959. 340 с.
Пуанкаре А. Избранные труды, I, Новые методы небесной механики. М.: Наука, 1971. С. 335-340.
Пуанкаре А. Лекции по небесной механике. М.: Наука, 1965. 537 с.
Кравчук М. Вплив Ейлера на подальший розвиток математики. Київ, видавн. Всеукраїнської Акад. наук. 1935// Науковопопулярні праці, вид. КПІ, 2000. С.54-56.
Copyright (c) 2022 Larysa Kryvoblotska
Stress State of Flexible Plates with a Hole
About the Authors
Larysa Kryvoblotska, Associate Professor, PhD in Physics and Mathematics (Candidate of Physics and Mathematics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: krivoblotsky19@gmail.com, ORCID ID: 0000-0002-3255-2884
Abstract
Keywords
Full Text:
PDFReferences
1. Kaiuk, Ya.F. & Alekseieva, M.K. (1979). O metode razlozheniia po parametru v zadachakh izgiba gibkikh plastin i obolochek [On the parameter expansion method in the problems of planes and shells bending]. Prykladna mekhanika – Applied Mechanics, 8, 63-68 [in Russian].
2. Kaiuk, Ya.F. & Vashchenko, L.F. (1980). Geometricheski nelineinoie deformirovaniie miahkikh obolochek pod nesimmetrichnoi nagruzkoi [Geometrically nonlinear deformation of soft shells under asymmetric load]. Prykladnaia mekhanika – Applied Mechanics, 8, 16-23 [in Russian].
3. Kaiuk, Ya.F. & Khyzhniak, V.K. (1981). Metod kvazilinearizatsii v nekotorykh nelineinykh zadachakh mekhaniki [Method of quasi-linearization in some nonlinear problems of mechanics]. Prykladnaia mekhanika – Applied Mechanics, 5, 25-32 [in Russian].
4. Kaiuk, Ya.F. & Krivoblotskaya, L.N. (2002). Metod regularizatsii singuliarnykh iteratsii v nelineinykh zadachakh izgiba plastin s otverstiiem [Method of regularization of singular iterations in nonlinear problems of bending of plates with a hole]. Visnyk Donetskoho universytetu – Bulletin of Donetsk University, ser. A: Pryrodnychi nauky – Natural Sciences, issue 1, 83-90 [in Russian].
5. Kaiuk, Ya.F. & Krivoblotskaya, L.N. (2002). Kontsentratsiya momentov v okrestnosti kruglogo otvestiya plastiny pri bol'shikh izgibakh [The concentration of moments in the vicinity of the round hole of the plate at large bends]. Visnyk Donetskoho universytetu – Bulletin of Donetsk University, ser. A: Pryrodnychi nauky – Natural Sciences, issue 2, 187-191 [in Russian].
6. Kaiuk, Ya.F. & Krivoblotskaya, L.N. (2002). Singulyarnyie iteratsii v nelineynykh zadachakh kontsentratsii napryazheniy [Singular Iterations in Nonlinear Stress Concentration Problems]. Teoreticheskaia i prikladnaia mekhanika – Theoretical and Applied Mechanics, issue 36, 98-108 [in Russian].
7. Hardy, G. (1951). Raskhodiashchiiesia riady [Divergent Series]. Moscow: Izdatelstvo inostrannoi literatury [in Russian].
8. Tikhonov, A.N. & Arsenin, V.Ya. (1986) Metody resheniya nekorrektnykh zadach [Methods for incorrect problems solving]. Moscow: Fizmatgiz [in Russian].
9. Savin, G.N. & Guz, A.N., Tsurpal I.A. (1966). Fizicheski nelineinyie zadachi plastin i obolochek, oslablennykh otverstiiami [Physically nonlinear problems of plates and shells weakened by holes//Proceedings of the school on nonlinear problems]. Tartu: Izdatelstvo Tartusskogo universiteta [in Russian].
10. Savin, G.N. & Fleishman (N.d.). Plastinki i obolochki s riobrami zhestkosti [Plates and shells with stiffening ribs]. Kyiv: Naukova dumka [in Russian].
11. Savin, G.M. & Tulchii, V.I. (1976). Dovidnyk z kontsentratsii napruzhen [Stress Concentration Handbook]. Kyiv: Vyshcha shkola [in Ukrainian].
12. Dryden, H. & Karman, T. (Eds.). (1959). Problemy mekhaniki [Problems of mechanics]. Moscow: Izdatelstvo inostrannoi literatury [in Russian].
13. Poincare, A. (1971). Novyie metody nebesnoi mekhaniki. Izbrannyie trudy [New methods of celestial mechanics. Selected works]. (Vol. I). Moscow: Nauka [in Russian].
14. Poincare, A. (1965). Lektsii po nebesnoi mekhanike [Lectures on celestial mechanics]. Moscow: Nauka [in Russian].
15. Kravchuk, M. (2000). Vplyv Eilera na podalshyi rozvytok matematyky [The influence of Euler on the further development of mathematics]. Kyiv: vydavnytstvo Vseukrainskoi Akademii nauk [in Ukrainian].