DOI: https://doi.org/10.32515/2664-262X.2022.5(36).1.3-14

Theoretical Substantiation of Management of Functioning of Technical and Transport Systems on the Basis of Methods of the System Theory of Information

Volodymyr Dzyura, Pavlo Maruschak, Dmytro Radyk, Mariya Sokil

About the Authors

Volodymyr Dzyura, Associate Professor, Doctor in Technics (Doctor of Technics Sciences), Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, e-mail: ds@tu.edu.te.ua, ORCID ID: 0000-0002-1801-2419

Pavlo Maruschak, Professor, Doctor in Technics (Doctor of Technics Sciences), Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, ORCID ID: 0000-0002-3001-0512

Dmytro Radyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, ORCID ID: 0000-0003-4345-9770

Mariya Sokil, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Lviv Polytechnic National University, Lviv, Ukraine

Abstract

An analysis of modern literature sources to search for mathematical models describing the dynamics of the process of forming a regular microrelief on the inner cylindrical surface of parts, gas transmission equipment operating in severe operating conditions, in order to increase their life. It is established that there are no mathematical models describing this process and the peculiarities of its implementation under the point action of the deforming element on the workpiece surface. The molding movements accompanying the process of forming a regular microrelief on the inner cylindrical surface of the workpiece are considered and the driving forces that accompany this process are analyzed. On the basis of the conducted analysis the mathematical model of dynamic process of formation of a regular microrelief on an internal cylindrical surface of a detail is developed. The peculiarity of this process is that the process of microrelief formation occurs by a concentrated force, the point of application of which in relation to the part is constantly changing in radial and axial directions, and then the mathematical model describing this process will be with a discrete right. It is proposed to model such an action using Dirac delta functions with linear and temporal variables, using the method of regularization of these features, in particular, existing methods of integrating the corresponding nonlinear mathematical models of torsional oscillations of a part. Analytical dependences are obtained, which describe these oscillations in the process of formation of a regular microrelief. Using Maple software, 3D changes in the torsion angle depending on different output values are constructed. The conducted researches will allow to consider torsional fluctuations that is especially actual for long cylindrical details, such as sleeves of hydraulic cylinders, details of drilling mechanisms and others.

Keywords

technology, cylindrical surface, quality parameters, vibration processing, torsional vibrations, mathematical models

Full Text:

PDF

References

1. Zemenkova, Ju.D. (Eds.). (2015). Design and operation of gas turbine plants . Tjumen' : TjumGNGU [in Russian]

2. Petrovsky, E & Bashmur, Kirill & Shadchina, Yu & Bukhtoyarov, V & Tynchenko, V. (2019). Study of microrelief forming technology on sliding bearings for oil and gas centrifugal units. Journal of Physics: Conference Series. 1399. 055032. 10.1088/1742-6596/1399/5/055032. [in English].

3. Hassan, A.M. (1997). The effects of ball and roller burnishing on the surface roughness and hardness of some non-ferrous metals. J. Mater. Process Technol., 72, 385–391 [in English].

4. Andrzej Dzierwa, Angelos P. (2019). Markopoulos. Influence of ball-burnishing process on surface topography parameters and tribological properties of hardened steel. Machines 7, 11; doi:10.3390/machines7010011 [in English].

5. Hamdi, Amine. (2020). Effect of cutting variables on bearing area curve parameters (BAC-P) during hard turning process. Archive of Mechanical Engineering, 67, 73-95. 10.24425/ame.2020.131684 [in English].

6. Kubatova, D. & Melichar, M. (2019). Roughness Evaluation Using Abbott-Firestone Curve Parameters, Proceedings of the 30th DAAAM International Symposium, pp.0467-0475, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-22-8, ISSN 1726-9679, Vienna, Austria DOI: 10.2507/30th.daaam.proceedings.063 [in English].

7. Sheider, Yu.G. (1982). Service properties of parts with regular microrelief. (2nd ed.). Revised and augmented, Leningrad, Mashinostroenie [in Russian].

8. Surfaces with regular microshape. Classification, parameters and characteristics. (1988). HOST 24773-81. Moscow, Izd. Stand. [in English].

9. Aftanaziv, I.S., Kyrychok, P.O. & Melnychuk, P.P. (2001). Improving the reliability of machine parts by surface plastic deformation. Zhytomyr: ZhTI Publishing [in Ukrainian].

10. S. Slavov, D. Dimitrov & I. Iliev, (2020). Variability of Regular Relief Cells Formed on Complex Functional Surfaces by Simultaneous Five-Axis Ball Burnishing. UPB Scientific Bulletin, Series D: Mechanical Engineering, 82, no. 3 (August 2020): 195–206 [in English].

11. Slavov, S.D. & Dimitrov, D.M. (2018). A study for determining the most significant parameters of the ball-burnishing process over some roughness parameters of planar surfaces carried out on CNC milling machine, MATEC Web of Conferences 2018 178, 02005 doi:10.1051/matecconf/201817802005 [in English].

12. Dzyura, V.O. (2020). Modeling of partially regular microreliefs formed on the end faces of rotation bodies by a vibration method. UJMEMS, 6(1), 30-38 [in English].

13. Lacalle, Luis. (2012). Ball burnishing application for finishing sculptured surfaces in multi-axis machines. International Journal of Mechatronics and Manufacturing Systems. P.997-1003 [in English].

14. Aftanaziv, I.S., Lytvyniak, Ya.M. & Kusyj, Ya.M. (2004). Doslidzhennia dynamichnykh kharakterystyk vibratsijno-vidtsentrovoho zmitsnennia dovho vymirnykh tsylindrychnykh detalej . Visnyk Natsional'noho universytetu «L 'vivs'ka politekhnika». Optymizatsiia vyrobnychykh protsesiv i tekhnichnyj kontrol' u mashynobuduvanni ta pryladobuduvanni – Bulletin of the National University "Lviv Polytechnic". Optimization of production processes and technical control in mechanical engineering and instrument making. 515, 55-64 [in Ukrainian].

15. Tsizh, B.R., Sokil, B.I. & Sokil, M. B. (2008). Teoretychna mekhanika [Theoretical mechanics]. L'viv: Spolom [in Ukrainian].

16. Pavlovs'kyj, M.A. (2002). Teoretychna mekhanika [Theoretical mechanics]. Kyiv: Tekhnika [in Ukrainian].

17. Markovych, B.M. (2010). Rivniannia matematychnoi fizyky [Equations of mathematical physics]. L'viv: Vyd-vo L'vivs'koi politekhniky [in Ukrainian].

18. Olejnik, O.A. (2005). Lekcii ob uravnenijah s chastnymi proizvodnymi [Lectures on partial differential equations]. Moskva: Binom [in Russian].

19. Perestiuk, M.O. & Chernikova, O.S. (2008). Deiaki suchasni aspekty asymptotyky teorii dyferentsial'nykh rivnian' z impul'snoiu diieiu [Some modern aspects of the asymptotics of the theory of differential equations with impulse action]. Ukrains'kyj matematychnyj zhurnal – Ukrainian Mathematical Journal 60, 81-90 [in Ukrainian].

20. Kapustian, O.V., Perestiuk, M.O. & Stenzhyts'kyj, O.M. (2019). Ekstremal'ni zadachi. Teoriia. Pryklady. Metody rozv'iazuvannia [Extreme tasks. Theory. Examples. Methods of solving]. Kiyv: VPTs Kyiv-untu [in Ukrainian].

21. Dzyra, B.I. (1977). K voprosu obosnovanija metoda usrednenija dlja issledovanija odnochastotnyh kolebanij, vozbuzhdaemyh mgnovennymi silami . Analiticheskie i kachestvennye metody issledovanija differencial'nyh i differencial'no-razdnostnyh uravnenij [On the question of substantiation of the averaging method for the study of single-frequency oscillations excited by instantaneous forces. Analytical and qualitative methods for studying differential and differential-difference equations]. Kiev: Izd-vo In-ta matematiki [in Russian].

22. Dzyra, B.I. & Ishhuk, V.V. (1977). O vlijanii parametricheskoj nagruzki impul'snogo vida na nelinejnuju kolebatel'nuju sistemu . Analiticheskie i kachestvennye metody issledovanija differencial'nyh i differencial'no-razdnostnyh uravnenij [On the influence of parametric load of an impulse type on a non-linear oscillatory system. Analytical and qualitative methods for studying differential and differential-difference equations]. Kiev: Izd-vo In-ta matematiki [in Russian].

23. Mitropol'skij. Ju. A. & Moseenkov. B. I. (1976). Asimptoticheskie reshenija uravnenij v chastnyh proizvodnyh [Asymptotic solutions of partial differential equations]. Kiev: Vishha shkola [in Russian].

24. Sokil, B.I., Pukach, P.Ya., Sokil, M.B. & Vovk, M.I.(2020). Advanced asymptotic approaches and perturbation theory methods in the study of the mathematical model of single-frequency oscillations of a nonlinear elastic body. Mathematical modeling and computing, Vol. 7, 2, 269–277 [in English].

25. Del'ta–funkcija. “Matematika” mathworld.wolfram.com. Retrieved from https//mathworld.wolfram.com/DeltaFunction.html [in Russian].

26. Cveticanin, L. (2016). Period of vibration of axially vibrating truly nonlinear rod. Journal of Sound and Vibration.374, 199–210 [in English].

27. Cveticanin L. & Pogany, T. (2012). Oscillator with a sum of non-integer order non-linearities. Journal of Applied Mathematics, Article ID 649050, 20 pages [in English].

GOST Style Citations

  1. Устройство и эксплуатация газотурбинных установок : учебное пособие / под общ. ред. Ю.Д. Земенкова. Тюмень : ТюмГНГУ, 2015. 434 с.
  2. Petrovsky, E & Bashmur, Kirill & Shadchina, Yu & Bukhtoyarov, V & Tynchenko, V. (2019). Study of microrelief forming technology on sliding bearings for oil and gas centrifugal units. Journal of Physics: Conference Series. 1399. 055032. 10.1088/1742-6596/1399/5/055032.
  3. Hassan, A.M. The effects of ball and roller burnishing on the surface roughness and hardness of some non-ferrous metals. J. Mater. Process Technol. 1997, 72, 385–391.
  4. Andrzej Dzierwa, Angelos P. Markopoulos. Influence of ball-burnishing process on surface topography parameters and tribological properties of hardened steel. Machines. 2019, 7, 11; doi:10.3390/machines7010011
  5. Hamdi, Amine. (2020). Effect of cutting variables on bearing area curve parameters (BAC-P) during hard turning process. Archive of Mechanical Engineering. 67. 73-95. 10.24425/ame.2020.131684.
  6. Kubatova, D. & Melichar, M. (2019). Roughness Evaluation Using Abbott-Firestone Curve Parameters, Proceedings of the 30th DAAAM International Symposium, pp.0467-0475, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-22-8, ISSN 1726-9679, Vienna, Austria DOI: 10.2507/30th.daaam.proceedings.063
  7. Sheider, Yu.G.. Service properties of parts with regular microrelief, 2nd ed., Revised and augmented, Leningrad, Mashinostroenie, 1982. 248 p. (in Russian).
  8. GOST 24773-81 Surfaces with regular microshape. Classification, parameters and characteristics, Moscow, Izd. Stand., 1988, 14p.
  9. Aftanaziv, I.S.; Kyrychok P.O.; Melnychuk, P.P. Improving the reliability of machine parts by surface plastic deformation. Zhytomyr, ZhTI Publishing, 2001. 516 p. (in Ukrainian).
  10. S. Slavov, D. Dimitrov, and I. Iliev, “Variability of Regular Relief Cells Formed on Complex Functional Surfaces by Simultaneous Five-Axis Ball Burnishing,” UPB Scientific Bulletin, Series D: Mechanical Engineering 82, no. 3 (August 2020): 195–206.
  11. Slavov, S. D.; Dimitrov, D.M. A study for determining the most significant parameters of the ball-burnishing process over some roughness parameters of planar surfaces carried out on CNC milling machine, MATEC Web of Conferences 2018 178, 02005 doi:10.1051/matecconf/201817802005.
  12. Dzyura, V. O. Modeling of partially regular microreliefs formed on the end faces of rotation bodies by a vibration method. UJMEMS. 2020. 6(1). 30-38.
  13. Lacalle, Luis. (2012). Ball burnishing application for finishing sculptured surfaces in multi-axis machines. International Journal of Mechatronics and Manufacturing Systems. P.997-1003
  14. Афтаназів І. С., Литвиняк Я. М., Кусий Я. М.. Дослідження динамічних характеристик вібраційно-відцентрового зміцнення довго вимірних циліндричних деталей . Вісник Національного університету «Львівська політехніка». 2004. № 515 : Оптимізація виробничих процесів і технічний контроль у машинобудуванні та приладобудуванні. С. 55-64.
  15. Ціж Б.Р., Сокіл Б.І., Сокіл М. Б. Теоретична механіка: підручник . Львів: Сполом, 2008. 458 с.
  16. Павловський М. А. Теоретична механіка. К . : Техніка, 2002. 512 с.
  17. Маркович Б.М. Рівняння математичної фізики: навч. посіб. Львів: Вид-во Львівської політехніки, 2010. 384с.
  18. Олейник О. А. Лекции об уравнениях с частными производными . Москва : Бином, 2005. 60 с.
  19. Перестюк М. О., Чернікова О. С. Деякі сучасні аспекти асимптотики теорії диференціальних рівнянь з імпульсною дією . Укр. мат. журн. 2008. 60. С. 81-90.
  20. Капустян О. В., Перестюк М. О., Стенжицький О. М. Екстремальні задачі. Теорія. Приклади. Методи розв’язування . К . : ВПЦ Київ-унту, 2019. 71 с.
  21. Дзыра Б. И. К вопросу обоснования метода усреднения для исследования одночастотных колебаний, возбуждаемых мгновенными силами . Аналитические и качественные методы исследования дифференциальных и дифференциально-раздностных уравнений. Киев: Изд-во Ин-та математики, 1977. С. 34-38.
  22. Дзыра Б. И., Ищук В. В. О влиянии параметрической нагрузки импульсного вида на нелинейную колебательную систему . Аналитические и качественные методы исследования дифференциальных и дифференциально-раздностных уравнений. Киев: Изд-во Ин-та математики, 1977. С. 39-59.
  23. Митропольский Ю. А., Мосеенков Б. И. Асимптотические решения уравнений в частных производных . Киев: Вища школа, 1976. 584 с.
  24. Sokil B. I., Pukach P. Ya., Sokil M. B., Vovk M. I. Advanced asymptotic approaches and perturbation theory methods in the study of the mathematical model of single-frequency oscillations of a nonlinear elastic body. Mathematical modeling and computing. 2020. Vol. 7, no. 2. Pp. 269–277.
  25. Дельта–функция. “Математика”. URL: https//math world.wolfram.com/ DeltaFunction.html (дата звернення: 15.09.2021).
  26. Cveticanin L. Period of vibration of axially vibrating truly nonlinear rod. Journal of Sound and Vibration. 374, 199–210 (2016).
  27. Cveticanin L., PoganyT. Oscillator with a sum of non-integer order non-linearities. Journal of Applied Mathematics. 2012, Article ID 649050, 20 pages (2012).
Copyright (c) 2022 Volodymyr Dzyura, Pavlo Maruschak, Dmytro Radyk, Mariya Sokil