DOI: https://doi.org/10.32515/2664-262X.2025.12(43).2.108-116

Research on the Manufacturing Precision of Gear Meshing in Group 3 Hydraulic Gear Pumps

Kyryl Shcherbyna, Viktor Hodorodozha, Andrii Kyrychenko

About the Authors

Kyryl Shcherbyna, Associate Professor, PhD (Candidate of Technical Sciences), Associate Professor of Mechanical Engineering, Mechatronics and Robotics Academic Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-1665-7686, e-mail: kir2912s@ukr.net

Viktor Hodorodozha, PhD student in 131 «Applied mechanics», Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0009-0002-0815-4031, e-mail: elektromagnetichydrogenerator@gmail.com

Andrii Kyrychenko, Professor, Doctor of technical sciences, Vice-Rector for Scientific and Pedagogical Work, Professor of Mechanical Engineering, Mechatronics and Robotics Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-4335-9588, e-mail: kyrychenkoam@kntu.kr.ua

Abstract

The article presents the results of a study of the manufacturing precision parameters of the gear meshing of group 3 hydraulic gear pumps. The relevance of the study is due to the increased operational loads on pumps of this group, which requires ensuring high precision of the geometric parameters of gear wheels in order to achieve optimal tightness, reduce hydraulic losses, and ensure durability of the meshing elements. The study analyzes main technological errors that arise in the manufacture of gear wheels, namely: profile deviation, pitch deviation, concentricity deviation, and lateral clearance deviation. The influence of these deviations on the main hydro-mechanical characteristics of group 3 gear pumps, including efficiency, vibration and noise levels, as well as the wear resistance of meshing elements under high loads, was assessed. Modern measuring instruments, in particular optical and contact profilometry, were used to control geometric accuracy, which made it possible to quantitatively assess the precision of machining. Based on the data obtained, recommendations for improving the technology of processing gear wheels of group 3 pumps are substantiated. In particular, the effectiveness of shaving as one of the key stages in achieving the required accuracy is analyzed. It has been proven that the use of this method allows achieving the precision of 7–8 according to DIN 3962, significantly reduces surface roughness parameters, and contributes to improving contact endurance. Particular attention is paid to the influence of heat treatment modes on the stability of the geometric parameters of the meshing, especially under variable load conditions. During the analysis of shaving gear pumps of group 3, it was found that the maximum deviations are observed in the indicators of accumulated pitch error and radial runout of the gear rim, which have a critical impact on the level of pulsation of volumetric delivery and resistance to fatigue failure. The results obtained allow us to form a substantiated technological strategy for the manufacture of high-precision gear transmissions for pumps operating in severe operating conditions. Thus, the results of the study are significant for improving the efficiency and reliability of Group 3 hydraulic gear pumps, which are widely used in power engineering, mobile equipment, and industrial hydraulic systems. Improving the precision of meshing elements directly affects the stability of pump output parameters, such as volumetric flow and torque, which is critical in ensuring functional reliability of hydraulic systems.

Keywords

tooth machining, shaving, gear meshing, gear hydraulic pump, precision

Full Text:

PDF

References

1. Pidhaiets’kyi, M. M., Shcherbyna, K. K., et al. (2023). Functional portrait of a gear hydraulic machine. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky, 8(39), 3–10. [in Ukrainian].

2. Aparakin, A. R. (2023). Modular-parametric principle of developing projects of gear hydraulic machines. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky, 7(38), Part 2, 51–58. [in Ukrainian].

3. Matviienko, O. O. (2005). Mathematical model of working fluid loss through the radial gap of an NSH-type gear pump. Tekhnika v silskohospodarskomu vyrobnytstvi, haluzeve mashynobuduvannia, avtomatyzatsiia, 16, 235–240. [in Ukrainian].

4. Shcherbyna, K. K., et al. (2024). Study of accuracy parameters in manufacturing of gear engagement of hydraulic pumps (group 1). Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky, II, 10(41), 65–74. https://doi.org/10.32515/2664-262X.2024.10(41).2.65-74. [in Ukrainian].

5. Kulieshkov, Yu. V., et al. (2022). Increasing the supply of gear pumps for vehicles and agricultural machinery. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky, 4(36), Part 1, 197–203. https://doi.org/10.32515/2664- 262X.2022.5(36).1.197-203. [in Ukrainian].

6. Kulieshkov, Yu. V. (2013). Improving the technical level of a gear pump based on new physical and mathematical models of the delivery process (Doctoral thesis). Kharkiv. 442 p. [in Ukrainian].

7. Kyrychenko, A. M., Shcherbyna, K. K., & Hodorozha, V. A. (2023). Functional portrait of a gear hydraulic pump. Proceedings of KZIATPS-2023: Comprehensive quality assurance of technological processes and systems (pp. 288–289). Chernihiv Polytechnic National University. [in Ukrainian].

8. Zhou, Y., Che, B., & Yuan, C. (2018). The design and analysis of a high-speed circular arc gear pump journal bearing. Advances in Mechanical Engineering, 10(12), 1–11. https://doi.org/10.1177/1687814018819288.

9. Zardin, B., Natali, E., & Borghi, M. (2019). Evaluation of the hydro-mechanical efficiency of external gear pumps. Energies, 12, 2468. https://doi.org/10.3390/en12132468.

10. Guo, F., & Fang, Z. (2018). Experimental and theoretical study of gear dynamical transmission characteristic considering measured manufacturing errors. Shock and Vibration, 1–20. https://doi.org/10.1155/2018/9645453.

11. Gear pump cavitation reduction: Patent 7878781 B2, United States. IPC F01C 2L/00. No. 12/001,279. Filed 11.12.2007; published 01.02.2011.

12. Expert Tools: website. www.etum.in.ua/product-category/zuboobrobni-verstaty/page/1/ (accessed 20.01.2025).

13. Mahr: website. http://technopolice.com.ua/mahr/mahrgear-zubovymiryuvannya/.

Citations

1. Функціональний портрет шестеренної гідравлічної машини / М. М. Підгаєцький, К. К. Щербина та ін. Центральноукраїнський науковий вісник. Технічні науки. 2023. № 8(39). С. 3–10.

2. Апаракін А. Р. Модульно-параметричний принцип розробки проектів шестеренних гідравлічних машин. Центральноукраїнський науковий вісник. Технічні науки : зб. наук. пр. Кропивницький : ЦНТУ, 2023. Вип. 7(38), ч. 2. С. 51–58.

3. Матвієнко О. О. Математична модель втрат робочої рідини через радіальний зазор шестеренного насоса типу НШ. Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація : зб. наук. праць КНТУ. 2005. Вип. 16. С. 235–240.

4. Дослідження параметрів точності виготовлення зубчатого зачеплення гідравлічних шестеренних насосів групи 1 / К. К. Щербина та ін. Центральноукраїнський науковий вісник. Технічні науки. 2024. Т. ІІ, №10(41). С. 65–74. DOI: https://doi.org/10.32515/2664-262X.2024.10(41).2.65-74.

5. Підвищення подачі шестеренних насосів засобів транспорту та сільськогосподарської техніки / Кулєшков Ю. В. та ін. Центральноукраїнський науковий вісник. Технічні науки. 2022. Вип. 4(36), ч. 1. С. 197–203. DOI: https://doi.org/10.32515/2664-262X.2022.5(36).1.197-203.

6. Кулєшков Ю. В. Підвищення технічного рівня шестеренного насоса на основі нових фізичних і математичних моделей робочого процесу подачі : дис. д-ра техн. наук : 05.05.17. Харків, 2013. 442 с.

7. Кириченко А. М., Щербина К. К., Годорожа В. А. Функціональний портрет шестеренного гідравлічного насосу. Комплексне забезпечення якості технологічних процесів та систем (КЗЯТПС-2023) : матеріали ХІІІ міжнар. наук.-практ. конф. (25–26 травня 2023 р., м. Чернігів). Чернігів : НУ «Чернігівська політехніка», 2023. Т. 1. С. 288–289.

8. Yang Zhou, Bowen Che, Ci Yuan. The design and analysis of a high-speed circular arc gear pump journal bearing. Advances in Mechanical Engineering. 2018. 10(12). С. 1–11. DOI: https://doi.org/10.1177/1687814018819288.

9. Zardin B., Natali E., Borghi M. Evaluation of the Hydro-Mechanical Efficiency of External Gear Pumps. Energies. 2019. 12, 2468. DOI: https://doi.org/10.3390/en12132468.

10. Fang Guo, Zongde Fang. Experimental and theoretical study of gear dynamical transmission characteristic considering measured manufacturing errors. Shock and Vibration (Hindawi). 2018. P. 1–20. DOI: https://doi.org/10.1155/2018/9645453.

11. Gear pump cavitation reduction : пат. 7878781 B2 United States : МПК F01C 2L/00. № 12/001,279 ; заявл. 11.12.2007 ; опубл. 01.02.2011.

12. Expert tools : веб-сайт. URL: https://www.etum.in.ua/product-category/zuboobrobni-verstaty/page/1/ (дата звернення : 20.01.2025).

13. Mahr : веб-сайт. URL: http://technopolice.com.ua/mahr/mahrgear-zubovymiryuvannya/.

Copyright (©) 2025, Kyryl Shcherbyna, Viktor Hodorodozha, Andrii Kyrychenko