DOI: https://doi.org/10.32515/2664-262X.2025.12(43).2.123-133
Prospects for the Application of Additive Technologies for Manufacturing and Repair of Wear-Resistant Structural Components in Modern Mechanical Engineering and Agriculture
About the Authors
Svitlana Kyrylakha, PhD student in Materials Science, Chemistry and Technologies, National University "Zaporizhzhia Polytechnic, Zaporizhzhia, Ukraine, ORCID: https://orcid.org/0009-0001-5688-5616, e-mail: lanakirilaha@gmail.com
Abstract
The aim of this article is to analyze the influence of thermomechanical parameters of additive manufacturing on the formation of temperature fields, phase composition, and residual stresses in dissimilar metallic structures produced using xBeam 3D Metal Printing, a variant of the Wire Arc Additive Manufacturing (WAAM) technology. Special attention is paid to the layer-by-layer formation of beam elements from VT6 titanium alloys combined with aluminum.
The paper presents a review and critical analysis of modern approaches to modeling thermomechanical processes in WAAM systems, with a focus on phase transformations, temperature gradients, residual stress generation, and microstructural changes. Empirical and numerical results from domestic and international literature are analyzed, including models that consider the thermophysical properties of materials. A case study is provided on how reducing the heat input (from 5 to 4 kW) affects residual stress levels in the titanium–aluminum interface. The influence of time intervals between deposited tracks on interlayer bonding quality is examined. The significance of phase transformations in the melt zone for defect formation and structural durability is highlighted.
Based on the conducted analysis, it is concluded that the key factors influencing the quality of WAAM- produced structures are temperature gradients, cooling rate, heat input density, and the interaction of dissimilar materials at the microstructural level. The use of numerical models improves the accuracy of predicting structural performance and optimizing technological parameters. The obtained results are practically significant for mechanical engineering, particularly in manufacturing critical components operating under variable loads and thermal conditions.
Keywords
additive manufacturing, WAAM, xBeam 3D Metal Printing, titanium alloys, Ti–Al joints, dissimilar structures, temperature field, thermomechanical modeling, residual stresses, phase transformations, interlayer bonding
Prospects for the Application of Additive Technologies for Manufacturing and Repair of Wear-Resistant Structural Components in Modern Mechanical Engineering and Agriculture
About the Authors
Svitlana Kyrylakha, PhD student in Materials Science, Chemistry and Technologies, National University "Zaporizhzhia Polytechnic, Zaporizhzhia, Ukraine, ORCID: https://orcid.org/0009-0001-5688-5616, e-mail: lanakirilaha@gmail.com
Abstract
Keywords
Full Text:
PDFReferences
1. Makhnenko, O. V., Milenin, O. S., Velykoivanenko, O. A., Rozynka, H. P., Kozlitina, S. S., Pivtorak, N. I., & Dziubak, L. I. (2021). Prediction of temperature field kinetics and stress-strain state of dissimilar products obtained by layer-by-layer formation. Skhidno-Yevropeiskyi zhurnal peredovykh tekhnolohii, 6/1(114), 6–14 [in Ukrainian].
2. Kostin, O. O., & Bevz, Ye. M. (2021). Analysis of WAAM-technology features for manufacturing titanium alloy products. Visnyk Zhytomyrskoho derzhavnoho tekhnolohichnoho universytetu. Ser. Tekhnichni nauky, 2(96), 45–52 [in Ukrainian].
3. Sampaio, R. F. V., Pragana, J. P. M., Bragança, I. M. F., Silva, C. M. A., Nielsen, C. V., & Martins, P. A. F. (2023). Modelling of wire arc additive manufacturing. A review. Advances in Industrial and Manufacturing Engineering, 6, Article 100121, 1–15.
4. Wang, F., Williams, S., & Colegrove, P. (2021). A review of wire arc additive manufacturing process, microstructure, and properties of titanium alloys. Journal of Manufacturing Processes, 64, 1087–1103.
5. Ding, D., Pan, Z., Cuiuri, D., & Li, H. (2015). Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. The International Journal of Advanced Manufacturing Technology, 81, 465–481.
6. Sakhnenko, M. S., Milenin, O. S., Hridnev, S. A., et al. (2019). Temperature dependence of intermetallic formation in Ti-Al joints. Poverkhna, 11, 101–107 [in Ukrainian].
7. Dziubak, L. I., Kozlitina, S. S., & Rozynka, H. P. (2020). Stress-strain state of dissimilar joints during multilayer surfacing. Visnyk Kyivskoho natsionalnoho universytetu tekhnolohii ta dyzainu, 4(150), 92–99 [in Ukrainian].
8. Zhang, M., Ding, D., Van Duin, S., & Li, H. (2020). Thermal monitoring and control in WAAM process: A review. Journal of Manufacturing Processes, 57, 828–845.
9. Yu, Z., Liu, Y., Sun, W., & Song, Y. (2022). Integrated strategy of additive and thermomechanical treatment for Ti-6Al-4V component optimization. Materials Science and Engineering A, 833, Article 142483.
10. Kravets, Yu. M., & Savchenko, O. V. (2022). Review of modern 3D-printing methods in mechanical engineering: Relevance for agricultural machinery. Tekhnichnyi visnyk, 3, 45–52 [in Ukrainian].
11. Bondarenko, V. M., & Kravchenko, A. I. (2021). SLM-process features compared to other additive technologies. Mashynobuduvannia i materialoznavstvo, 12(2), 30–38 [in Ukrainian].
12. Herzog, D., Seyda, V., Wycisk, E., & Emmelmann, C. (2016). Additive manufacturing of metals. Acta Materialia, 117, 371–392.
13. DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., et al. (2018). Additive manufacturing of metallic components: Process, structure and properties. Progress in Materials Science, 92, 112–224.
14. Gurmesa, F. D., Lemu, H. G., Adugna, Y. W., & Harsibo, M. D. (2019). Residual stresses in Wire Arc Additive Manufacturing products and their measurement techniques: A systematic review. Metals, 9(6), 628.
15. Gurmesa, F. D., Lemu, H. G., Adugna, Y. W., & Harsibo, M. D. (2023). Residual stresses in Wire Arc Additive Manufacturing products and their measurement techniques: A systematic review. Materials, 16(4), 1234.
16. Gibson, I., Rosen, D., & Stucker, B. (2015). Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer.
Citations
1. Махненко О. В., Міленін О. С., Великоіваненко О. А., Розинка Г. П., Козлітіна С. С., Півторак Н. І., Дзюбак Л. І. Прогнозування кінетики температурних полів і напружено-деформованого стану різнорідних виробів, отримуваних методом пошарового формування. Східно-Європейський журнал передових технологій. 2021. № 6/1 (114). С. 6–14.
2. Костін О. О., Бевз Є. М. Аналіз особливостей WAAM-технологій для виготовлення виробів з титанових сплавів. Вісник Житомирського державного технологічного університету. Сер. Технічні науки. 2021. Вип. 2 (96). С. 45–52.
3. Sampaio R.F.V., Pragana J.P.M., Bragança I.M.F., Silva C.M.A., Nielsen C.V., Martins P.A.F. Modelling of wire arc additive manufacturing. A review. Advances in Industrial and Manufacturing Engineering. 2023. Vol. 6, артикул № 100121. P. 1–15.
4. Wang F., Williams S., Colegrove P. A review of wire arc additive manufacturing process, microstructure, and properties of titanium alloys. Journal of Manufacturing Processes. 2021. Vol. 64. P. 1087–1103.
5. Ding D., Pan Z., Cuiuri D., Li H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The International Journal of Advanced Manufacturing Technology. 2015. Vol.81. P. 465–481.
6. Сахненко М.С., Міленін О.С., Гріднєв С.А. та ін. Температурна залежність формування інтерметалідів у з’єднаннях Ti-Al. Поверхня. 2019. Вип. 11. С. 101–107.
7. Дзюбак Л.І., Козлітіна С.С., Розинка Г.П. Напружено-деформований стан різнорідних з’єднань при багатошаровому наплавленні. Вісник Київського національного університету технологій та дизайну. 2020. № 4(150). С. 92–99.
8. Zhang M., Ding D., Van Duin S., Li H. Thermal monitoring and control in WAAM process: a review. Journal of Manufacturing Processes. 2020. Vol. 57. P. 828–845.
9. Yu Z., Liu Y., Sun W., Song Y. Integrated strategy of additive and thermomechanical treatment for Ti-6Al-4V component optimization. Materials Science and Engineering A. 2022. Vol. 833. Article number : 142483.
10. Кравець Ю.М., Савченко О.В. Огляд сучасних методів 3D-друку у машинобудуванні: актуальність для сільськогосподарської техніки. Технічний вісник. 2022. Вип. 3. С. 45–52.
11. Бондаренко В.М., Кравченко А.І. Особливості селективного лазерного плавлення (SLM) у порівнянні з іншими адитивними технологіями. Машинобудування і матеріалознавство. 2021. Т. 12, № 2. С. 30–38.
12. Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Materialia. 2016. Vol. 117. P. 371–392.
13. DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., et al. Additive manufacturing of metallic components – process, structure and properties. Progress in Materials Science. 2018. Vol. 92. P. 112– 224.
14. Gurmesa F. D., Lemu H. G., Adugna Y. W., Harsibo M. D. Residual stresses in Wire Arc Additive Manufacturing products and their measurement techniques: A systematic review. Metals. 2019. Vol. 9, №. 6. P. 628.
15. Gurmesa F. D., Lemu H. G., Adugna Y. W., Harsibo M. D. Residual Stresses in Wire Arc Additive Manufacturing Products and Their Measurement Techniques: A Systematic Review. Materials. 2023. Vol. 16, №. 4. P. 1234.
16. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing / І. Gibson, Д. Rosen, Б. Stucker. New York : Springer, 2015. 507 с.
Copyright (©) 2025, Svitlana Kyrylakha