DOI: https://doi.org/10.32515/2664-262X.2025.12(43).1.358-365

Comparison of Road Cement Concrete Properties with Polypropylene and Basalt Fibers Addition

Artem Lapchenko

About the Authors

Artem Lapchenko, Senior Researcher, PhD in Engineering (Candidate of Technical Sciences), Associate Professor of the Department of Bridges, Tunnels and Hydraulic Structures, National Transport University, Kyiv, Ukraine, ORCID: https://orcid.org/0000-0003-4037-5395, e-mail: las83@ukr.net

Abstract

The aim and objectives of the study are to establish the influence of different dosages of basalt and polypropylene fibers in a wide range of concentrations on the main physical and mechanical indicators of road cement concrete based on Portland cement with its partial replacement by ground blast furnace slag and based only on clinker Portland cement. The article presents the results of the influence of different dosages of basalt fibers and polypropylene fibers in a wide range of concentrations on the physical and mechanical properties of road cement concrete. It was found that the introduction of polypropylene fibers and basalt fibers has almost no effect on the compressive strength of cement concrete. Based on experimental studies, the concentration of polypropylene and basalt fibers was determined, which corresponds to the maximum tensile strength in bending of cement concrete. This concentration is 0.9-1.0 kg/m3 of polypropylene fiber and 15.0-16.0 kg/m3 of basalt fiber. A change in the average density of cement concretes with the addition of polypropylene fibers and basalt fibers was established. The introduction of the optimal amount of polypropylene fiber (fiber) leads to higher values of the tensile strength parameter in bending of road cement concrete compared to cement concrete based on basalt fiber. The change in the strength indicators of cement concrete based on Portland cement partially replaced by ground slag with the addition of the optimal amount of polypropylene fibers and basalt fibers is similar to the change in these indicators of cement concrete based on purely clinker Portland cement.

Keywords

basalt fibers, bending, concentration, strength, polypropylene fiber, compression, cement concrete

Full Text:

PDF

References

1. Advanced civil infrastructure materials. (2006). H. C. Wu (Ed.). Cambridge: Woodhead Publishing Limited.

2. Amreen, N., & Milind, V. (2015, December 9). A review on effect of fiber reinforced concrete on rigid pavement. In Conference Smarte Solution for Better Tomorrows (pp. 222–228). Badnera: PRMIT&R.

3. Avishreshth, S., Bansal, P., & Chopra, T. (2018). Characterization of steel fiber reinforced pervious concrete for applications in low volume traffic roads. In Urbanization Challenges in Emerging Economies: Resilience and Sustainability of Infrastructure (pp. 93–102). New Delhi: The Institution of Engineers.

4. Badr, A., Ashour, A., & Platten, A. (2006). Statistical variations in impact resistance of polypropylene fibre- reinforced concrete. International Journal of Impact Engineering, 32(11), 107–120. https://doi.org/10.1016/j.ijimpeng.2005.05.003

5. Babich, Ye. M., Andriichuk, O. V., Uzhegov, S. O., & Shapoval, I. V. (2015). Application of steel fiber concrete in road construction. Modern Technologies and Calculation Methods in Construction, 4, 3–9. http://nbuv.gov.ua/UJRN/stmrb_2015_4_3 [in Ukrainian].

6. Bazaltove volokno [Basalt fiber]. (2025). Wikipedia. The Free Encyclopedia. https://uk.wikipedia.org/wiki/Базальтове_волокно (Accessed: 16.06.2025) [in Ukrainian].

7. Brazhnyk, H. V. (2015). Monolithic road cement concretes of high frost resistance with organomineral complex and fiber (Candidate of Technical Sciences dissertation abstract, 05.23.05). Kharkiv. 23 p. [in Ukrainian].

8. Cao, Y., Yu, Q., & Brouwers, H. (2017, October 31 – November 1). Numerical investigation of fibers effects in SFRC under dynamic tension. In 9th International Symposium on Cement and Concrete (pp. 1–7). Wuhan: Wuhan University of Technology.

9. Chen, M., Ren, C., Liu, Y., Yang, Y., Wang, E., & Liang, X. (2019). Effects of polypropylene fibre and strain rate on dynamic compressive behaviour of concrete. Materials, 12, 1797. https://doi.org/10.3390/ma12111797

10. Climate.gov. (2025). Lindsey, R., & Dahlman, L. Climate change: global temperature (reviewed by J. Blunden). Climate.gov. https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (Accessed: 10.06.2025).

11. Experiences with 76 t and 34,5 m. (2022, November 17). The Nordic perspective: EMS and EMS2 trucks – the positive outcomes and lessons learned. Revision of the Weights and Dimension Directive.

12. Hannant, D. J. (1978). Fibre-cements and concretes. Chichester: John Wiley & Sons Ltd.

13. Jafarifar, N. (2012). Shrinkage behavior of steel-fibre-reinforced-concrete pavements (Doctor of Philosophy’s thesis). Sheffield.

14. Karakurt, C., & Turap, A. (2017). Properties of concrete pavements produced with different type of fibers. Journal of the Turkish Chemical Society, 1, 17–24. https://acikkaynak.bilecik.edu.tr/items/14d55f8a-5293-4de5- b943-fae77578b967 (Accessed: 10.06.2025).

15. Khadhum, M. M., Essa, M. S., & Hashim, K. S. (2006). Effect of shape and type of steel fibre on some mechanical properties of reinforced concrete. Journal of Babylon University. Engineering Sciences, 12, 1–11. https://www.researchgate.net/publication/317826132_EFFECT_OF_SHAPE_AND_TYPE_OF_STEEL_FIBRE _ON_SOME_MECHANICAL_PROPERTIES_OF_REINFORCED_CONCRETE (Accessed: 10.06.2025).

16. Lapchenko, A. S. (2010). Rheological properties of asphalt polymer concretes under dynamic deformation (Candidate of Technical Sciences dissertation abstract, 05.23.05). Kharkiv. 22 p. [in Ukrainian].

17. Lapchenko, A. S. (2025). Influence of ground blast-furnace slag and plasticizing additive on strength properties of road concrete. Modern Technologies and Calculation Methods in Construction, 23, 143–154. https://doi.org/10.36910/6775-2410-6208-2025-13(23)-14 [in Ukrainian].

18. Liu, H., & Wang, N. (2020). Computer model and analysis on pavement performance and pavement structure of polypropylene fibre material concrete. Journal of Physics: Conference Series, 1578(1), 012057. https://iopscience.iop.org/issue/1742-6596/1578/1 (Accessed: 10.06.2025).

19. McCulloch, M. T., Winter, A., Sherman, C. E., et al. (2024). 300 years of sclerosponge thermometry shows global warming has exceeded 1.5 °C. Nature Climate Change, 14, 171–177. doi.org/10.1038/s41558-023-01919-7

20. Menyhárd, A., Menczel, J., & Abraham, T. (2020). Polypropylene fibers. In The Textile Institute Book Series. Thermal Analysis of Textiles and Fibers, 12, 205–222. https://doi.org/10.1016/B978-0-08-100572-9.00012-4

21. Sliwinski, J., & Zych, T. (1997, October 13–15). Contact zone between cement paste and fibre and its influence on the water permeability of fibre reinforced concrete. In International Symposium on Brittle Matrix Composites – BMC 5 (pp. 54–63). Warsaw: BIGRAF and Woodhead Publ.

22. Tolmachov, D. S. (2015). Crack-resistant fine-grained cement concretes for transport purpose (Candidate of Technical Sciences dissertation abstract, 05.23.05). Kharkiv. 20 p. [in Ukrainian].

23. Tolmachov, S. M., Bielichenko, O. A., Doroshenko, M. A., & Pokusa, Yu. P. (2022). Comparative characteristics of polypropylene and basalt fibers in road concretes. Mechanics and Mathematical Methods, 2, 65–74. http://repositsc.nuczu.edu.ua/bitstream/123456789/17012/1/MMM%20%E2%84%968%20%282%29.pdf (Accessed: 16.06.2025) [in Ukrainian].

24. Ullah, F., Al-Neshawy, F., & Punkki, J. (2018). Early age autogenous shrinkage of fibre reinforced concrete. Nordic Concrete Research, 59(1), 59–72. https://doi.org/10.245781tamd/2018-12478

25. Yermak, N., Pliya, P., Beaucour, A.-L., Simon, A., & Noumowe, A. (2017). Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties. Construction and Building Materials, 132, 240–250. https://doi.org/10.1016/j.conbuildmat.2016.11.120

26. Yu, F., et al. (2023). Techno-economic analysis of residential building heating strategies for cost-effective upgrades in European cities. iScience, 107541. https://doi.org/10.1016/j.isci.2023.107541 (Accessed: 31.01.2025).

Citations

1. Лапченко А. С. Реологічні властивості асфальтополімербетонів при динамічному деформуванні : автореф. дис. … канд. техн. наук : 05.23.05. Харків, 2010. 22 с.

2. Experiences with 76 t and 34,5 m. The Nordic perspective: EMS and EMS2 trucks – the positive outcomes and lessons learned. Revision of the Weights and Dimension Directive. 17 Nov. 2022.

3. Lindsey R., Dahlman L. Climate change: global temperature / reviewed by Jessica Blunden. Climate.gov : веб- сайт. URL: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (дата звернення: 10.06.2025).

4. McCulloch M. T., Winter A., Sherman C. E. et al. 300 years of sclerosponge thermometry shows global warming has exceeded 1.5 °C. Nature Climate Change. 2024. № 14. Р. 171–177. DOI: 10.1038/s41558-023-01919-7.

5. Hannant D. J. Fibre-cements and concretes. Chichester : John Wiley & Sons Ltd, 1978. 228 p.

6. Liu H., Wang N. Computer model and analysis on pavement performance and pavement structure of polypropylene fibre material concrete. Journal of Physics: Conference Series. 2020. Vol. 1578, № 1. 012057. URL: https://iopscience.iop.org/issue/1742-6596/1578/1 (дата звернення: 10.06.2025).

7. Menyhárd A., Menczel J., Abraham T. Polypropylene fibers. The Textile Institute Book Series. Thermal Analysis of Textiles and Fibers. 2020. № 12. P. 205–222. DOI: 10.1016/B978-0-08-100572-9.00012-4.

8. Базальтове волокно. Вікіпедія. Вільна енциклопедія : веб-сайт. URL: https://uk.wikipedia.org/wiki/Базальтове_волокно (дата звернення: 16.06.2025).

9. Толмачов С. М., Бєліченко О. А., Дорошенко М. А., Покуса Ю. П. Порівняльна характеристика застосування поліпропіленової і базальтової фібри у дорожніх бетонах. Механіка та математичні методи. 2022. № 2. С. 65–74. URL: http://repositsc.nuczu.edu.ua/bitstream/123456789/17012/1/MMM%20%E2%84%968%20%282%29.pdf (дата звернення: 16.06.2025).

10. Chen M., Ren C., Liu Y., Yang Y., Wang E., Liang X. Effects of polypropylene fibre and strain rate on dynamic compressive behaviour of concrete. Materials. 2019. № 12. P. 1797. DOI: 10.3390/ma12111797.

11. Yermak N., Pliya P., Beaucour A.-L., Simon A., Noumowe A. Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: spalling, transfer and mechanical properties. Construction and Building Materials. 2017. Vol. 132. P. 240–250. DOI: 10.1016/j.conbuildmat.2016.11.120.

12. Бражник Г. В. Монолітні дорожні цементні бетони високої морозостійкості з органомінеральним комплексом та фіброю : автореф. дис. … канд. техн. наук : 05.23.05. Харків, 2015. 23 с.

13. Advanced civil infrastructure materials / ed. by H. C. Wu. Cambridge : Woodhead Publishing Limited, 2006. 375 p.

14. Badr A., Ashour A., Platten A. Statistical variations in impact resistance of polypropylene fibre-reinforced concrete. International Journal of Impact Engineering. 2006. № 32 (11). Р. 107–120. DOI: 10.1016/j.ijimpeng.2005.05.003.

15. Jafarifar N. Shrinkage behavior of steel-fibre-reinforced-concrete pavements : Doctor of Philosophy’s thesis. Sheffield, 2012. 224 p.

16. Sliwinski J., Zych T. Contact zone between cement paste and fibre and its influence on the water permeability of fibre reinforced concrete. International Symposium on Brittle Matrix Composites – BMC 5 (Warsaw, 13–15 October 1997). Warsaw : BIGRAF and Woodhead Publ., 1997. P. 54–63.

17. Cao Y., Yu Q., Brouwers H. Numerical investigation of fibers effects in SFRC under dynamic tension. 9th International Symposium on Cement and Concrete (Wuhan, 31 October – 01 November 2017). Wuhan : Wuhan University of Technology, 2017. P. 1–7.

18. Бабич Є. М., Андрійчук О. В., Ужегов С. О., Шаповал І. В. Застосування сталефібробетону в дорожньому будівництві. Сучасні технології та методи розрахунків у будівництві. 2015. Вип. 4. С. 3–9. URL: http://nbuv.gov.ua/UJRN/stmrb_2015_4_3 (дата звернення: 16.06.2025).

19. Avishreshth S., Bansal P., Chopra T. Characterization of steel fiber reinforced pervious concrete for applications in low volume traffic roads. Urbanization Challenges in Emerging Economies: Resilience and Sustainability of Infrastructure (New Delhi, 12–14 December 2017). New Delhi : The Institution of Engineers, 2018. Р. 93–102.

20. Karakurt C., Turap A. Properties of concrete pavements produced with different type of fibers. Journal of the Turkish Chemical Society. 2017. Vol. 1. P. 17–24. URL: https://acikkaynak.bilecik.edu.tr/items/14d55f8a-5293- 4de5-b943-fae77578b967 (дата звернення: 10.06.2025).

21. Ullah F., Al-Neshawy F., Punkki J. Early age autogenous shrinkage of fibre reinforced concrete. Nordic Concrete Research. 2018. Vol. 59, № 1. P. 59–72. DOI: 10.245781tamd/2018-12478.

22. Amreen N., Milind V. A review on effect of fiber reinforced concrete on rigid pavement. Conf. Smarter Solution for Better Tomorrows (Badnera, 9 December 2015). Badnera : PRMIT&R, 2015. P. 222–228.

23. Толмачов Д. С. Тріщиностійкі дрібнозернисті цементні бетони транспортного призначення : автореф. дис. … канд. техн. наук : 05.23.05. Харків, 2015. 20 с.

24. Khadhum M. M., Essa M. S., Hashim K. S. Effect of shape and type of steel fibre on some mechanical properties of reinforced concrete. Journal of Babylon University. Engineering Sciences. 2006. Vol. 12. P. 1–11. URL: https://www.researchgate.net/publication/317826132_EFFECT_OF_SHAPE_AND_TYPE_OF_STEEL_FIBRE_ON_SOME_MECHANICAL_PROPERTIES_OF_REINFORCED_CONCRETE (дата звернення: 10.06.2025).

25. Лапченко А. С. Вплив меленого доменного шлаку та пластифікуючої добавки на міцнісні властивості дорожнього бетону. Сучасні технології та методи розрахунків у будівництві. 2025. № 23. С. 143–154. DOI: 10.36910/6775-2410-6208-2025-13(23)-14.

Copyright (©) 2025, Artem Lapchenko