DOI: https://doi.org/10.32515/2664-262X.2025.12(43).1.147-163

Analysis of Vibrating Feeders for Transporting and Dosing Seeds in the System of Their Automatic Phenotyping

Elchyn Aliiev, Olexandr Chernii

About the Authors

Elchyn Aliiev, Senior Researcher, Doctor of Technical Sciences, Professor of the Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0003-4006-8803, e-mail: aliev@meta.ua

Olexandr Chernii, PhD student in Industrial Mechanical Engineering, Senior Lecturer of the Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0003-0691-5829, e-mail: sanek20.1984@gmail.com.

Abstract

The paper presents the actualization of the use of vibrating feeders in modern technological lines for processing and preparing seeds of agricultural crops. The results of scientific research into the process of transporting and dosing particles of loose cargo along the working body of the vibrating feeder are presented. The dependence of the qualitative characteristics of the operation of vibrating feeders on the influence of such parameters as the granulometric composition of cargo particles, the height of the transported cargo layer, the inclination of the working trough of the feeder bowl to the horizon, the angle of inclination of the disturbing force vector, the trajectory of movement of the working body of the vibrating feeder, etc. is described. An analysis of existing designs of bunker spiral vibrating feeders is presented. Analysis of the designs of vibrating feeders has shown that an electromagnetic vibratory drive is most often used as a vibratory drive of feeders. The elastic elements of vibrating feeders are polymer or metal springs in the form of rods or plates inclined at an angle to the horizon. The elastic suspension of the feeder hopper in the form of a hyperboloid torsion is also widespread. The current direction of development of designs of vibrating spiral feeders is to ensure oscillation of the working body along an elliptical trajectory. This can be achieved by the following methods: creating a special design of the elastic elements of the vibrating feeder, placing the vibration drives relative to the working body, using vibration drives that can change the trajectory of movement of the working body from linear to elliptical. The material made it possible to systematize achievements in the development of designs and ways to increase the efficiency of using vibrating feeders for transporting and dosing seeds of agricultural crops.

Keywords

seed phenotyping, vibrating feeder, seed mixture, vibration parameters, working body of the vibrating feeder, elastic element of the vibrating feeder, vibration drive, trajectory of movement of the working body

Full Text:

PDF

References

1. Pieruschka, R., & Schurr, U. (2019). Plant phenotyping: Past, present, and future. Plant Phenomics, 2019, 1–6. https://doi.org/10.34133/2019/7507131

2. Aliiev, E. B. (2022). Automatic phenotyping of sunflower seed material: Monograph. Kyiv: Agrarian Science [in Ukrainian].

3. Aliiev, E. B., & Vedmedieva, K. V. (2024). Quantitative phenotyping of sunflower genotypes: Monograph. Dnipro: LIRA [in Ukrainian].

4. Lanets, O. S. (2018). Fundamentals of calculation and design of vibration machines. Book 1. Theory and practice of creating vibration machines with harmonic motion of the working body: Textbook. Lviv: Lviv Polytechnic Publishing House [in Ukrainian].

5. Kobets, A. S., et al. (2013). Lifting and transport machines: Textbook. A. S. Kobets & V. I. Dyrda (Eds.). Luhansk: LNU named after T. Shevchenko [in Ukrainian].

6. Chen, H., Li, L., Zhang, W., Liu, R., & Jiang, S. (2019). A vibratory conveying method for planetary regolith: Preliminary experiment and numerical simulation. IEEE Access, 7, 29386–29396. https://doi.org/10.1109/access.2019.2902348

7. Hamed, Y. S., Alotaibi, H., & El-Zahar, E. R. (2020). Nonlinear vibrations analysis and dynamic responses of a vertical conveyor system controlled by a proportional derivative controller. IEEE Access, 8, 119082– 119093. https://doi.org/10.1109/access.2020.3005377

8. Chen, H., Jiang, S., Liu, R., & Zhang, W. (2018). Particle directional conveyance under longitudinal vibration by considering the trough surface texture: Numerical simulation based on the discrete element method. Shock and Vibration, 2018, 1–13. https://doi.org/10.1155/2018/8260462

9. Nikolaichuk, I. I., Ratushniak, H. S., & Kots, I. V. (2005). Mathematical modeling and optimal control of the working process of a drying chamber. Visnyk VPI, (6), 196–199 [in Ukrainian].

10. Keppler, S., Bakalis, S., Leadley, C. E., & Fryer, P. J. (2016). Processing of barley grains in a continuous vibrating conveyor. Journal of Food Engineering, 187, 114–123. https://doi.org/10.1016/j.jfoodeng.2016.04.010

11. Keppler, S., Bakalis, S., Leadley, C. E., & Fryer, P. J. (2016). A systematic study of the residence time of flour in a vibrating apparatus used for thermal processing. Innovative Food Science & Emerging Technologies, 33, 462–471. https://doi.org/10.1016/j.ifset.2015.12.003

12. Bespalov, A., Svidrak, I., & Boiko, O. (2022). Study of the dynamic model of the oscillating system of vibratory feeders with an elliptical trajectory of the movement of the working body. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 24(98), 76–81. https://doi.org/10.32718/nvlvet-f9814

13. Calta, J. (2024). Vibratory conveyor with elliptical oscillation is quiet and fast. Advances in Design, Simulation and Manufacturing, 8, 1–12. https://doi.org/10.13140/RG.2.2.10392.37128

14. Vibratory conveyor with elliptical oscillation. ROBOTERM: Website. Retrieved April 25, 2025, from https://www.roboterm.cz/en/induction/elliptical-oscillation

15. Krülle, C. A., Götzendorfer, A., Grochowski, R., Rehberg, I., Rouijaa, M., & Walzel, P. (2007). Granular flow and pattern formation on a vibratory conveyor. In Traffic and Granular Flow’05 (pp. 111–128). Springer. https://doi.org/10.1007/978-3-540-47641-2_9

16. Aliiev, E., Gavrilchenko, A., Tesliuk, H., Tolstenko, A., & Koshul’ko, V. (2019). Improvement of the sunflower seed separation process efficiency on the vibrating surface. Acta Periodica Technologica, 50, 12–22. https://doi.org/10.2298/apt1950012a

17. VDI 2333:2017-10. (2017). Vibration conveyors for bulk material. Berlin: VDI [Technical requirements, Germany].

18. Dallinger, N. (2017). Die Diskrete Elemente Methode als Simulationsmethode in der Vibrationsfördertechnik (Doctoral dissertation). Technical University of Chemnitz, Chemnitz.

19. Pechonka, V. S. (2023). Development and design of a vibratory bunker feeder: Bachelor’s qualification work. Dublyany: Lviv National University of Nature Management [in Ukrainian].

20. Zhao, Y. J., Huang, F. S., & Zhao, Z. L. (2013). Dynamic analysis on vertical vibratory conveyor. Advanced Materials Research, 694–697, 3–6. https://doi.org/10.4028/www.scientific.net/amr.694-697.3

21. Sinfoniya Technology Co., Ltd. (2015). Vibrating conveyors: Design catalog. 22 p.

22. AVITEQ Vibrationstechnic GmbH. (2023). Vibrating conveyors: Design catalog. 20 p.

Citations

1. Pieruschka R., Schurr U. Plant Phenotyping: Past, Present, and Future. Plant Phenomics. 2019. Vol. 2019. P. 1–6. DOI: 10.34133/2019/7507131

2. Алієв Е. Б. Автоматичне фенотипування насіннєвого матеріалу соняшнику : монографія. Київ : Аграрна наука, 2022. 104 с.

3. Алієв Е. Б., Ведмедєва К. В. Кількісне фенотипування генотипів соняшнику : монографія. Дніпро : ЛІРА, 2024. 204 с.

4. Ланець О. С. Основи розрахунку та конструювання вібраційних машин. Кн. 1. Теорія та практика створення вібраційних машин з гармонійним рухом робочого органа : навч. посіб. Львів : Вид-во Львівської політехніки, 2018. 612 с.

5. Підйомно-транспортні машини : підруч. / Кобець А. С. та ін. ; за ред. А. С. Кобця, В. І. Дирди. Луганськ : ДЗ «ЛНУ ім. Т. Шевченка», 2013. 218 с.

6. Chen H., Li L., Zhang W., Liu R., Jiang S. A Vibratory Conveying Method for Planetary Regolith: Preliminary Experiment and Numerical Simulation. IEEE Access. 2019. Vol. 7. P. 29386–29396. DOI: 10.1109/access.2019.2902348

7. Hamed Y. S., Alotaibi H., El-Zahar E. R. Nonlinear Vibrations Analysis and Dynamic Responses of a Vertical Conveyor System Controlled by a Proportional Derivative Controller. IEEE Access. 2020. Vol. 8. P. 119082–119093. DOI: 10.1109/access.2020.3005377

8. Chen H., Jiang S., Liu R., Zhang W. Particle Directional Conveyance under Longitudinal Vibration by Considering the Trough Surface Texture: Numerical Simulation Based on the Discrete Element Method. Shock and Vibration. 2018. Vol. 2018. P. 1–13. DOI: 10.1155/2018/8260462

9. Ніколайчук І. І., Ратушняк Г. С., Коц І. В. Математичне моделювання і оптимальне управління робочим процесом сушильної камери. Вісник ВПІ. 2005. № 6. С. 196–199.

10. Keppler S., Bakalis S., Leadley C. E., Fryer P. J. Processing of Barley Grains in a Continuous Vibrating Conveyor. Journal of Food Engineering. 2016. Vol. 187. P. 114–123. DOI: 10.1016/j.jfoodeng.2016.04.010.

11. Keppler S., Bakalis S., Leadley C. E., Fryer P. J. A Systematic Study of the Residence Time of Flour in a Vibrating Apparatus Used for Thermal Processing. Innovative Food Science & Emerging Technologies. 2016. Vol. 33. P. 462–471. DOI: 10.1016/j.ifset.2015.12.003

12. Bespalov A., Svidrak I., Boiko O. Study of the Dynamic Model of the Oscillating System of Vibratory Feeders with an Elliptical Trajectory of the Movement of the Working Body. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies. 2022. Vol. 24 (98). P. 76–81. DOI: 10.32718/nvlvet-f9814

13. Calta J. Vibratory Conveyor with Elliptical Oscillation is Quiet and Fast. Advances in Design, Simulation and Manufacturing. 2024. Vol. 8. P. 1–12. DOI: 10.13140/RG.2.2.10392.37128

14. Vibratory Conveyor with Elliptical Oscillation. ROBOTERM : веб-сайт. URL: https://www.roboterm.cz/en/induction/elliptical-oscillation (дата звернення: 25.04.2025).

15. Krülle C. A., Götzendorfer A., Grochowski R., Rehberg I., Rouijaa M., Walzel P. Granular Flow and Pattern Formation on a Vibratory Conveyor. Traffic and Granular Flow’05. 2007. P. 111–128. DOI: 10.1007/978-3-540-47641-2_9

16. Aliiev E., Gavrilchenko A., Tesliuk H., Tolstenko A., Koshul’ko V. Improvement of the Sunflower Seed Separation Process Efficiency on the Vibrating Surface. Acta Periodica Technologica. 2019. Vol. 50. P. 12–22. DOI: 10.2298/apt1950012a

17. VDI 2333:2017-10. Schwingförderer für Schüttgut (Vibration Conveyors for Bulk Material). [Чинний від 2017-10]. Berlin, 2017. 32 с. (Технічні вимоги Німеччини).

18. Dallinger N. Die Diskrete Elemente Methode als Simulationsmethode in der Vibrationsfördertechnik : дис. … доктора-інженера. Технічний університет м. Хемніц. Хемніц, 2017. 158 с.

19. Печонка В. С. Розроблення і проектування вібраційного бункерного живильника : кваліфікац. роб. … бакалавра. Дубляни : Львів. нац. ун-т природокористування, 2023. 45 с.

20. Zhao Y. J., Huang F. S., Zhao Z. L. Dynamic Analysis on Vertical Vibratory Conveyor. Advanced Materials Research. 2013. Vols. 694–697. P. 3–6. DOI: 10.4028/www.scientific.net/amr.694-697.3

21. Vibrating Conveyors. Каталог конструкцій. Sinfoniya Technology Co., Ltd, 2015. 22 с.

22. Vibrating Conveyors. Каталог конструкцій. AVITEQ Vibrationstechnic GmbH, 2023. 20 с.

Copyright (©) 2025, Elchyn Aliiev, Olexandr Chernii