DOI: https://doi.org/10.32515/2664-262X.2025.11(42).241-249

Modernization of Steel Trusses Made of Square and Rectangular Hollow Sections

Hennadii Portnov, Viktor Dariienko, Pukalov Viktor, Volodymyr Yatsun, Serhii Hudz

About the Authors

Hennadii Portnov, Associate Professor, PhD in Mechanisation and Electrification of Agricultural Production (Candidate of Technical Sciences), Associate Professor of Construction, Road Machines and Civil Engineering Academic Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, https://orcid.org/0009-0005-1521-2086, e-mail: budkom999@gmail.com

Viktor Dariienko, Associate Professor, PhD (Candidate of Technical Sciences), Associate Professor of Department of Construction, Road Machinery and construction, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, https://orcid.org/0000-0001-9023-6030, e-mail: vvdarienko@gmail.com

Pukalov Viktor, Associate Professor, PhD in Processes and Machines for Pressure Shaping (Candidate of Technical Sciences), Associate Professor of Machine Parts and Applied Mechanics Academic Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, https://orcid.org/ 0000-0002-0848-5861, e-mail: pukalovvictor@gmail.com

Volodymyr Yatsun, Associate Professor, PhD in Mining machines (Candidate of Technical Sciences), Professor of Construction, Road Machines and Civil Engineering Academic Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, https://orcid.org/0000-0003-0245-0075, e-mail: yatsun@i.ua

Serhii Hudz, Associate Professor, PhD in Structural Engineering and Building Construction (Candidate of Technical Sciences), Associate Professor of Architecture Academic Department, Pryazovskyi State Technical University, Dnipro, Ukraine, https://orcid.org/0000-0002-4764-8635, e-mail: goods_s_a@pstu.edu

Abstract

The purpose of this study is to investigate the stress-strain behavior of nodes in purlin trusses fabricated from square and rectangular steel tubes. In modern steel construction, ensuring optimal material utilization and structural reliability is essential. The research aims to identify the causes of uneven stress distribution in conventional truss joints and to explore innovative reinforcement methods. By addressing the low utilization coefficient inherent in standard connections, the study seeks to develop a reinforcement strategy that enhances load-bearing capacity without altering the overall geometry of the structure. In the presented work, an advanced numerical analysis was carried out using the finite element method in combination with the specialized IDEA StatiCa software. A detailed computational model of the truss nodes was developed to assess the internal force distribution and to pinpoint critical zones where stress concentrations occur. The investigation involved iterative simulations and parametric studies to evaluate the effectiveness of incorporating intermediate reinforcement elements, such as strengthening plates, into the node configurations. The simulation results revealed that conventional unreinforced connections exhibit significant local overstressing, which limits the effective use of steel. In contrast, the introduction of targeted reinforcement produced a more uniform stress distribution and resulted in an increase in the overall load-bearing capacity of the truss system by approximately 1.45 times. The comprehensive analysis confirms that advanced modeling techniques can reliably predict the benefits of design modifications for enhanced structural performance. The results of this study confirm that the integration of intermediate reinforcement in purlin truss nodes substantially improves structural efficiency and load capacity. The optimized design achieves a more even stress distribution and minimizes the risk of local failures without requiring any changes to the truss geometry. Advanced finite element analysis has proven to be a crucial tool in identifying critical stress zones and guiding effective reinforcement strategies. Consequently, the proposed methodology offers a viable solution for modernizing steel truss systems in both civil and industrial applications, ensuring enhanced safety and material efficiency.

Keywords

truss modernization, finite element analysis, stress distribution, structural reinforcement

Full Text:

PDF

References

1. Baluk, I.M. (2016). Optimal design of reconstruction and reinforcement of core metal structures. Extended abstract of candidate’s thesis. Lviv [in Ukrainian].

2. Blikharskyi Z.Ya. (2008). Reconstruction and reinforcement of buildings and structures. Lviv [in Ukrainian].

3. DBN. (2014). Steel Structures. (ДБН В.2.6-198:2014). Kyiv [in Ukrainian].

4. Derzhstandart Ukrainy. (2008). Construction of buildings and structures. Steel roof trusses made of rectangular bent-welded profiles. (ДСТУ Б В.2.6-74:2008). Kyiv [in Ukrainian].

5. Zinkevych, O.H. (2013). Rational design of frames of low-rise buildings and superstructures made of light steel thin-walled structures. Extended abstract of candidate’s thesis. Dnipro [in Ukrainian].

6. Nemchynov, Yu.I. (1995). Spatial finite element method (with application to the design of buildings and structures). Kyiv: NDIBK [in Ukrainian].

7. Pichuhin, S.F., Chychulin, V.P. (2015). New structural systems for lightweight combined trusses. Resursoekonomni materialy, konstruktsii, budivli ta sporudy, 31, 486–491 [in Ukrainian].

8. Pichuhin, S.F., Chychulin, V.P., & Chychulina, K.V. (2016). New resource-saving structures made of shaped tubes. Resursoekonomni materialy, konstruktsii, budivli ta sporudy, 32, 243–248 [in Ukrainian].

9. Permiakov, V.O., & Hohol M.V. (2006). Recommendations for the design of rational metal load-bearing structures to slab and roof. Lviv [in Ukrainian].

10. Program complex Lira-SAPR. Examples of calculation and design. Liraland. https://www.liraland.ua/download/private/lira/2023/lira_sapr_examples_ua.pdf [in Ukrainian].

11. Steel roof structures. Roof trusses made of square and rectangular steel hollow sections. USCC. https://uscc.ua/uploads/page/images/koncepcii/fermy_truby_18-24m.pdf [in Ukrainian].

12. Babayev, V.M., Bugayevsky, S.O., & Evel, S.M. (2017). Numerical and experimental methods of rational design and construction of structural systems. Kyiv: Stal [in Ukrainian].

13. Chykhladze, E.D. (2002). Improvement of calculation and design methods of steel-concrete and steel structures of industrial buildings and structures. Kharkiv [in Ukrainian].

14. Frantisek, W. et al. (2019). Benchmark cases for advanced design of structural steel connections. Czech Technical University in Prague.

15. CEN – European Committee for Standardisation. EN 1993. (2005) Eurocode 3: Design of steel structures, Part 1-3: General rules – supplementary rules for coldformed members and sheeting (incorporating CEN corrigendum Nov. 2009). Brussels.

16. Idea StatiCa Steel. https://www.ideastatica.com.

17. Steel frame structures. WOLF System. https://www.wolfsystem.at/en-at/product-lines/industrial-and-commercialconstruction/industrial-construction/steel-frame-structures.

18. Pichugin, S.F., Chichulin, V.P., & Chichulina, K.V. (2017). Spatial structures of closed profiles. ACADEMIC JOURNAL series: industrial machine building, civil engineering. Vol. 1. 48. 138–143. https://doi.org/10.26906/znp.2017.48.787.

Citations

1. Балук І.М. Оптимальне проектування реконструкції та підсилення стрижневих металевих конструкцій: автореф. дис. … канд. техн. наук: 05.23.01. Львів, 2016. 22 с.

2. Бліхарський З.Я. Реконструкція та підсилення будівель і споруд. Львів: Вид-во Нац. ун-ту «Львівська політехніка», 2008. 108 с.

3. ДБН В.2.6-198:2014. Сталеві конструкції. Норми проектування. Чинний від 2015-01-01. Вид. офіц. Київ: Мінрегіон України, 2014. 199 с.

4. ДСТУ Б В.2.6-74:2008. Конструкції будинків і споруд. Ферми сталеві кроквяні з гнутозварних профілів прямокутного перерізу. Чинний від 2010-01-01. Вид. офіц. Київ: Мінрегіонбуд України, 2009. 33 с.

5. Зінкевич О.Г. Раціональне проектування каркасів малоповерхових будівель та надбудов з легких сталевих тонкостінних конструкцій: автореф. дис. … канд. техн. наук: 05.23.01. Дніпро, 2013. 20 с.

6. Немчинов Ю.І. Метод просторових скінчених елементів (з застосуванням до розрахунку будівель та споруд): монографія. Київ: НДІБК, 1995. 386 с.

7. Пічугін С.Ф., Чичулін В.П. Нові конструктивні системи легких комбінованих ферм. Ресурсоекономні матеріали, конструкції, будівлі та споруди. Рівне, 2015. № 31. С. 486–491.

8. Пічугін С. Ф., Чичулін В. П., Чичуліна К. В. Нові ресурсоекономні конструкції з профільних труб. Ресурсоекономні матеріали, конструкції, будівлі та споруди. Рівне, 2016. № 32. С. 243–248.

9. Пермяков В.О., Гоголь М.В. Рекомендації з проектування раціональних металевих несучих конструкцій перекрить та покрить. Львів: Видавництво Національного університету "Львівська політехніка", 2006. 24 с.

10. Програмний комплекс Ліра-САПР. Приклади розрахунку і проектування. Ліраленд. URL: https://www.liraland.ua/download/private/lira/2023/lira_sapr_examples_ua.pdf (дата звернення: 24.02.2025).

11. Сталеві конструкції покриття. Ферми покриття із квадратних та прямокутних сталевих труб. УЦСБ. URL: https://uscc.ua/uploads/page/images/koncepcii/fermy_truby_18-24m.pdf (дата звернення: 24.02.2025).

12. Бабаєв В.М., Бугаєвський С.О., Євель С.М. Чисельні та експериментальні методи раціонального проектування та зведення конструктивних систем. Київ: Сталь, 2017. 404 с.

13. Чихладзе Е.Д. Удосконалення методів розрахунку і проектування сталебетонних і сталевих конструкцій промислових будівель і споруд. Харків, 2002. 126 с.

14. Frantisek, W. et al. (2019). Benchmark cases for advanced design of structural steel connections. Czech Technical University in Prague [in English].

15. CEN – European Committee for Standardisation. EN 1993. (2005) Eurocode 3: Design of steel structures, Part 1-3: General rules – supplementary rules for coldformed members and sheeting (incorporating CEN corrigendum Nov. 2009). Brussels [in English].

16. Idea StatiCa Steel. URL: https://www.ideastatica.com (date of access: 24.02.2025) [in English].

17. Steel frame structures. WOLF System. URL: https://www.wolfsystem.at/en-at/product-lines/industrial-and-commercialconstruction/industrial-construction/steel-frame-structures (date of access: 06.09.2024) [in English].

18. Pichugin, S.F., Chichulin, V.P., & Chichulina, K.V. (2017). Spatial structures of closed profiles. ACADEMIC JOURNAL series: industrial machine building, civil engineering. Vol. 1. 48. 138–143. URL: https://doi.org/10.26906/znp.2017.48.787 (date of access: 07.09.2024) [in English].

Copyright (c) 2025 Hennadii Portnov, Viktor Dariienko, Pukalov Viktor, Volodymyr Yatsun, Serhii Hudz