DOI: https://doi.org/10.32515/2664-262X.2025.11(42).286-297

Increasing the Level of Environmental Friendliness of Transportation Based on the Intellectualization of Transport Systems

Eduard Ladyzhenskyi, Volodymyr Petlenko, Andrii Hrynkiv

About the Authors

Daria Kulova, PhD in Transport Technologies, Senior Lecturer at the Department of Machine Operation and Repair, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0001-6727-5357, e-mail: d.coolava@gmail.com

Sergiy Mahopets, Associate Professor, PhD in Technical Sciences (Candidate of Technical Sciences), Head of the Department of Machinery Operation and Repair, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-1522-4555, e-mail: magserg@ukr.net

Oleksandr Livitskyi, PhD (Candidate of Technical Sciences), Assistant Lecturer at the Department of Machine Operation and Repair, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-0274-4463, e-mail: Livitskyi885@gmail.com

Abstract

The publication is devoted to the study of ways to improve the level of environmental friendliness of transportation. The purpose of the study is to identify the possibilities of using intelligent transport systems to improve the level of environmental friendliness of transportation, as well as to conduct an analytical review of ways to increase the level of efficiency of the use of software tools, intelligent technologies that contribute to reducing the negative impact of business processes of using corporate transport in supply chains on the local environment. The provision of a high level of environmental friendliness of transport is justified based on the use of intelligent transport systems with a plan to ensure quality standards for the implementation of logistics processes in the process of sustainable development of the corporation, which are formed from the point of view of environmental protection and measured by accompanying production activities at the level of pollutant emissions (carbon dioxide СО2), assessment of indicators of the effective use of renewable energy, its specific weight produced per unit of cargo/number of passengers, hybridity of vehicles and the level of impact on the biodiversity of related ecosystems. The point of view is defended that the promising capabilities of intelligent transport systems in the management of environmentally friendly transport can be realized through the use of Big Data processing algorithms with the subsequent use of systematized information for route optimization and traffic management in real time; involvement in the value chain of the intellectual potential of digital transport platforms that are able to integrate into urban transport management systems, control traffic lights, traffic and public transport; improvement of supply chain logistics through automation of freight transportation, application of analytical models for predicting future demand for transportation and appropriate management of transport and storage resources; improving road safety by improving tools for analyzing driver behavior, monitoring the condition of vehicles; systematic increase in the level of energy efficiency of fuel use; integration of different modes of transport, the use of Hyperloop technologies and other innovations

Keywords

harmful emissions, environmental friendliness of transportation, intelligent transportation systems

Full Text:

PDF

References

1. Antoshkina, L.I., Bilyaev, M.M., Korenyuk, E.D., & Khrushch V.K. (2003). Environmental status: models and forecast. Dnipropetrovsk: Science and Educationnm. 328 p. [In Ukrainian].

2. Bakulich, O.O., Grebelnyk, M.M., & Samoilenko, E.S. (2022). Management of the ecological safety of a megalopolis. Bulletin of the National Transport University. Series “Technical Sciences”. Scientific and Technical Collection, 161, 1 (51), 12-20. DOI: 10.33744/2308-6645-2022-1-51-020-027 [In Ukrainian].

3. Belyaev, N.M., Korenyuk, O.D., & Khrushch, V.K. (2002). Methods of express calculation of atmospheric pollution level. Dnipropetrovsk: Science and Education. 192 p. [In Ukrainian].

4. Linnyk, I.E., Lezhneva, O.I., Dorozhko, E.V. at al. (2020). Ecological aspects of the motor transport complex. Kharkiv: Publishing house “Smugasta typografiya”. 194 p. [In Ukrainian].

5. Oliynyk, Ya. B. (2006). Environmental protection. Kyiv: Nika-Center. 264 p. [In Ukrainian].

6. Avriel, M., Rijckaert, M.J., & Wilde, D.J. (Eds.). (1973). Optimization and design. Englewood Cliffs, N.J., Prentice-Hall.

7. Baldwin C.Y., & Clark K.B. (2000). Design rules, Vol. 1: The Power of Modularity. Cambridge: MIT Press.

8. Baldwin, C.Y., Clark, K.B. (2002). The option value of modularity in design. Harvard NOM Working Paper No. 02-13; Harvard Business School Working Paper No. 02-078. Boston: Harvard business school. https://papers.ssrn.com/ sol3/papers.cfm?abstract_id=312404.

9. ClimateSeed. From carbon offsetting to climate contribution. Guidebook. (2018). https://climateseed.com/climate-contribution-download-guide.

10. Ericsson, A., & Erixon, G. (1999). Controlling design variants. Society of manufacturing engineers.

11. European Commission, PEFCR (Product Environmental Footprint Category Rules) Guidance document. (2018). Product Environmental Footprint Category 2 Rules Guidance 3 Version 6.3 – May 2018. https://eplca.jrc.ec.europa.eu/ permalink/PEFCR_guidance_v6.3-2.pdf.

12. European Commission. (2012). Product Umweltfußabdruck Category Rules Guidance. https:// ec.europa.eu/ environment/eussd/smgp/pdf/ PEFCR_guidance_v6.3-2.pdf.

13. European Commission. Product Umweltfußabdruck (OEF) Guide. (2012). https://ec.europa.eu/ environment/eussd/ smgp/pdf/footprint/OEF%20Guide_final_July%202012_clean%20version.pdf.

14. Greb, A., Schmid, S., Löw, I., Gulyássy, F., Lauterbach, B., Baseshankar, N. et.al. (2022). Logistik mit SAP S/4HANA. Bonn: Rheinwerk [In German].

15. lc-impact.eu. LC-Version 1.0. A spatially differentiated life cycle impact assessment approach. https://lc-impact.eu/doc/ LC-IMPACT_Overall_report_20201113.pdf.

16. materialflows.eu (2017). http: www.materialflows.eu/assets/Material_Flows_of_the_HA_Industry_LR.pdf.

17. Schönsleben, P. (2024). Handbuch Integrales Logistikmanagement. Operations und Supply Chain Management innerhalb des Unternehmens und unternehmensübergreifend. Berlin: Springer Vieweg [In German].

18. Trancossi, M. (2015). A response to industrial maturity and energetic issues: a possible solution based on constructal law. Eur. Transp. Res. Rev., 7: 2. DOI: 10.1007/s12544-014-0150-4.

19. Wong, J.Y. (2008). Theory of ground vehicles. 4th ed. John Wiley & Sons. New York. 592 p.

Citations

1. Антошкіна Л.І., Біляєв М.М., Коренюк Є.Д., Хрущ В.К. Стан довкілля: моделі та прогноз: монографія. Дніпропетровськ: Наука і освіта, 2003. 328 с.

2. Бакуліч О.О., Гребельник М.М., Самойленко Є.С. Управління екологічною безпекою мегаполісу. Вісник Національного транспортного університету. Серія “Технічні науки”. Науково-технічний збірник. 2022. 161 Випуск 1 (51). С. 12-20. DOI: 10.33744/2308-6645-2022-1-51-020-027

3. Бєляєв Н.М., Коренюк О.Д., Хрущ В.К. Методи експрес розрахунку рівня забруднення атмосфери. Дніпропетровськ: Наука і освіта, 2002. 192 с.

4. Линник І.Е., Лежнева О.І., Дорожко Є.В. та ін. Екологічні аспекти автотранспортного комплексу: монографія. Харків: Видавництво “Смугаста типографія”, 2020. 194 с.

5. Охорона навколишнього середовища: монографія / за ред. Я.Б. Олійника. К.: Ніка-Центр, 2006. 264 с.

6. Avriel, M., Rijckaert, M.J., &Wilde, D.J. (Eds.). Optimization and design. Englewood Cliffs, N.J., Prentice-Hall. 1973. 512 p.

7. Baldwin C.Y., Clark K.B. Design rules. Vol. 1: The Power of Modularity. Cambridge: MIT Press. 2000. 483 p.

8. Baldwin, C.Y., Clark, K.B. (2002). The option value of modularity in design. Harvard NOM Working Paper No. 02-13; Harvard Business School Working Paper No. 02-078. Boston: Harvard business school. URL: https://papers.ssrn.com/ sol3/papers.cfm?abstract_id=312404

9. ClimateSeed. From carbon offsetting to climate contribution. Guidebook. URL: https://climateseed.com/climate-contribution-download-guide (дата звернення 3.09.2024).

10. Ericsson A., Erixon G. Controlling design variants. Society of manufacturing engineers. 1999. 145 p.

11. European Commission, PEFCR (Product Environmental Footprint Category Rules) Guidance document. Product Environmental Footprint Category 2 Rules Guidance 3 Version 6.3 – May 2018. URL: https://eplca.jrc.ec.europa.eu/ permalink/PEFCR_guidance_v6.3-2.pdf. 2018 (дата звернення 2.09.2024).

12. European Commission. Product Umweltfußabdruck (OEF) Guide. URL: https://ec.europa.eu/environment/eussd/ smgp/pdf/footprint/OEF%20Guide_final_July%202012_clean%20version.pdf. 2012. (дата звернення 2.09.2024)

13. European Commission. Product Umweltfußabdruck Category Rules Guidance. URL: https://ec.europa.eu/ environment/eussd/smgp/pdf/ PEFCR_guidance_v6.3-2.pdf. 2012 (дата звернення 2.09.2024).

14. Greb A., Schmid S., Löw I., Gulyássy F., Lauterbach B., Baseshankar N., Pamperrien B. Logistik mit SAP S/4HANA. 3., aktualisierte und erweiterte Auflage. Bonn: Rheinwerk. 2022. 671 s.

15. lc-impact.eu. LC-Version 1.0. A spatially differentiated life cycle impact assessment approach. URL: https://lc-impact.eu/doc/LC-IMPACT_Overall_report_20201113.pdf (дата звернення 4.09.2024)

16. materialflows.eu. URL: http: www.materialflows.eu/assets/Material_Flows_of_the_HA_Industry_LR.pdf. 33 p. (дата звернення 4.09.2024).

17. Schönsleben P. Handbuch Integrales Logistikmanagement. Operations und Supply Chain Management innerhalb des Unternehmens und unternehmensübergreifend. 9., Aufl. Berlin: Springer Vieweg. 2024. 876 p.

18. Trancossi, M. (2015). A response to industrial maturity and energetic issues: a possible solution based on constructal law. Eur. Transp. Res. Rev. 2015. 7: 2. DOI: 10.1007/s12544-014-0150-4 (дата звернення 6.09.2024).

19. Wong J.Y. Theory of ground vehicles, 4th edn. 4th ed. John Wiley & Sons. 2008. New York. 592 с.

Copyright (c) 2025 Eduard Ladyzhenskyi, Volodymyr Petlenko, Andrii Hrynkiv