DOI: https://doi.org/10.32515/2664-262X.2025.11(42).127-134

Spatial Stiffness of the End Effector of a Machine Tool with Combined Kinematics

Andrii Kyrychenko, Mahomed Amirseidov, Oleksandr Kropivny

About the Authors

Andrii Kyrychenko, Professor, Doctor of Technical Sciences, Professor of the department "Mechanical Engineering, Mechatronics and Robotics", Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, https://orcid.org/0000-0002-4335-9588, e-mail: amkyrychenko@gmail.com

Mahomed Amirseidov, PhD student in Applied Mechanics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0009-0001-5778-7065, e-mail: radiy.amirseidov@gmail.com

Oleksandr Kropivny, PhD student in Applied Mechanics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-6445-092Х, e-mail: a.krp78@gmail.com

Abstract

The article presents theoretical formulations for determining the stiffness matrix of the end effector of a machine tool with combined kinematics based on a 2-dof parallel manipulator with variable-length links. The stiffness matrix is determined using the simple spring decomposition method, wherein the links of the parallel structure mechanism are modeled as simple linear and torsional springs (or their combinations). The end effector of the machine tool with a 2-dof parallel manipulator, connected to the machine base by several active or passive links, is represented as a rigid body linked to the base through multiple simple springs with known linear or torsional stiffness. The stiffness matrix of the spatial parallel manipulator with the end effector connected to the base by multiple links subjected only to compression and tension or transmitting rotational torque, can be determined as a combination of the stiffness matrices of the links, treated as simple springs. The geometric parameters required for calculating the stiffness matrices of individual links — namely, the link axis vectors and the coordinates of their endpoints — are obtained using the inverse kinematics of the manipulator. As a result, analytical expressions are derived for determining the spatial stiffness matrix as a function of the mechanism’s geometric parameters, the position coordinates of the end effector, and the translational and torsional stiffness of the mechanism’s links. The dependence of translational stiffness along the coordinate axes and torsional stiffness about the coordinate axes on the position of the end effector, as well as the influence of the stiffness of variable-length links on the coordinate stiffness of the end effector, are established. These findings provide a tool for optimizing the geometric and structural parameters of machine tool based on stiffness criteria.

Keywords

spatial stiffness, stiffness matrix, parallel manipulator, machine tool with combined kinematics

Full Text:

PDF

References

1. Machine Tool : Pat. 35361 Ukraine : IPC B23B 41/00. No u200805562 ; filed 29.04.2008 ; published 10.09.2008 ; Bulletin No 17. [in Ukrainian]

2. Gosselin, C. & Zhang D. (2002) Stiffness analysis of parallel mechanisms using a lumped model. International Journal of Robotics and Automation, 17(1), 17-27.

3. Quennouelle, C., & Gosselin, C. (2008). Stiffness matrix of compliant parallel mechanisms. In J. Lenarčič & P. Wenger (Eds.), Advances in robot kinematics: Analysis and design (pp. 331–341). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8600-7_34

4. Chakarov, D. (2003). Approaches of stiffness control of parallel manipulators with actuation redundancy. In Proceedings of the International Scientific Conference PRACTRO’03 (pp. 199–206). Varna, Bulgaria.

5. Carbone, G., Ceccarelli, M. (2010) Comparison of indices for stiffness performance evaluation. Front. Mech. Eng. China, (5), 270–278. https://doi.org/10.1007/s11465-010-0023-z.

6. Kyrychenko, A. M., & Strutynskyi, V. B. (2010). Spatial stiffness of equipment with parallel kinematics. Bulletin of ZhDTU, (8), 88–97. [in Ukrainian]

7. Strutynskyi, V. B., & Kyrychenko, A. M. (2010). Mathematical apparatus of sixth-order vectors for calculating the stiffness of spatial parallel manipulators. Bulletin of Sumy State University, Technical Sciences Series, (2), 142–154. [in Ukrainian]

8. Huang, S., & Schimmels, J. M. (2000). The eigenscrew decomposition of spatial stiffness matrices. IEEE Transactions on Robotics and Automation, 16(2), 146–156. https://doi.org/10.1109/70.843171

9. Kyrychenko, A. M. (2010). Stiffness matrix of spatial mechanisms with parallel structure and elastic links. Design, Manufacturing, and Operation of Agricultural Machinery: National Interdepartmental Scientific and Technical Collection. 40(1), 256–262. Kirovohrad: KNTU. [in Ukrainian]

10. Gonçalves R., Carbone G, Carvalho J. & Ceccarelli M. (2016). A comparison of stiffness analysis methods for robotic systems. International journal of mechanics and control, 17 (2), 35–58.

11. Hoevenaars, A. G., Lambert, P., & Herder, J. L. (2016). Jacobian-based stiffness analysis method for parallel manipulators with non-redundant legs. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(3), 341–352. https://doi.org/10.1177/0954406215602283

12. Kyrychenko, A. M., Lenchenko, L. V., & Zaika, A. M. (2008). Analysis of the kinematics of a machine tool with a two-coordinate parallel structure mechanism “bipode”. Bulletin of Ternopil State Technical University, (2), 74–81 [in Ukrainian].

Citations

1. Верстат : Пат. на корисну модель 35361 Україна : МПК B23B 41/00. – № u200805562 ; заявл. 29.04.2008 ; опубл. 10.09.2008 ; Бюл. № 17.

2. Gosselin C., Zhang D. Stiffness analysis of parallel mechanisms using a lumped model. International Journal of Robotics and Automation. 2002. Vol. 17(1). P. 17-27.

3. Quennouelle C., Gosselin C. Stiffness Matrix of Compliant Parallel Mechanisms. Advances in Robot Kinematics: Analysis and Design. Part 5. Springer Netherlands, 2008. P. 331-341.

4. Chakarov D. Approaches of Stiffness Control of Parallel Manipulators with Actuation Redundancy. Proc. of the International Scientific Conference PRACTRO'03, Yune 10-13. Varna, 2003. P. 199-206.

5. Carbone G., Ceccarelli M. Comparison of indices for stiffness performance evaluation. Frontiers of Mechanical Engineering in China. 2010. No 5. P. 270-278. https://doi.org/10.1007/s11465-010-0023-z.

6. Кириченко А.М., Струтинський В.Б. Просторова жорсткість обладнання з паралельною кінематикою. Вісник ЖДТУ. 2010. №8. С. 88-97.

7. Струтинський В. Б., Кириченко А. М. Математичний апарат векторів шостого порядку для розрахунків жорсткості просторових механізмів паралельної структури. Вісник Сумського державного університету. Серія «Технічні науки». Суми : СумДУ, 2010. № 2. С. 142-154.

8. Huang S., Schimmels J. M. The eigenscrew decomposition of spatial stiffness matrices. IEEE Trans. Robotics Automation. 2000. Vol. 6, No. 2. P. 146-156.

9. Кириченко А. М. Матриця жорсткості просторових механізмів паралельної структури з пружними ланками. Конструювання, виробництво та експлуатація сільськогосподарських машин: загальнодерж. міжвід. наук.-техн. зб. Кіровоград: КНТУ, 2010. Вип. 40, ч. 1. С. 256-262.

10. Gonçalves R., Carbone G, Carvalho J., Ceccarelli M. (2016). A comparison of stiffness analysis methods for robotic systems. International journal of mechanics and control. 2016. 17 (2), 35-58.

11. Hoevenaars A.G., Lambert P., Herder J.L. Jacobian-based stiffness analysis method for parallel manipulators with non-redundant legs. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2015; 230(3):341-352. doi:10.1177/0954406215602283

12. Кириченко А. М., Ленченко Л. В., Заїка А. М. Аналіз кінематики верстата з двохкоординатним механізмом паралельної структури «біпод». Вісник Тернопільського державного технічного університету. Тернопіль : ТДТУ, 2008. № 2. С. 74-81.

Copyright (c) 2025 Andrii Kyrychenko, Mahomed Amirseidov, Oleksandr Kropivny