DOI: https://doi.org/10.32515/2664-262X.2025.11(42).184-189
Analysis of Electromagnetic Testing and Defect Detection Tools for 5G Generation Radio Antennas
About the Authors
Viktor Bondarchuk, PhD student in Automation, computer-integrated technologies and robotics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, https://orcid.org/0000-0002-9710-3537, e-mail: barbaross2@ukr.net
Anatolii Matsui, Professor, Doctor of technical sciences, Associate Professor of the Department of Production Process Automation, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0001-5544-0175, e-mail: matsuyan@ukr.net
Viktor Kalich, Professor, Candidate of Technical Sciences, Professor of Production Processes Automation Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-7625-9022, e-mail: vmk041954@gmail.com.
Abstract
The purpose of this article is to review the key elements of fifth-generation (5G) wireless systems and the methods used for electromagnetic testing and defect detection of active antenna systems. Due to the introduction of massive MIMO technologies and millimeter-wave (mmWave) communication in 5G networks, traditional testing approaches are no longer effective, prompting the need for new non-invasive methods. The article aims to analyze current approaches to post-production non-invasive testing of active antenna systems and explore the potential of machine learning elements to enhance the efficiency of defect detection.
The study begins with an overview of the technological features of 5G systems, including the use of millimeter-wave frequency bands, massive MIMO antenna arrays, and beamforming techniques, which have increased the complexity of telecommunication equipment. A classification of electromagnetic testing methods is provided, comparing conductive testing methods with non-invasive Over-The-Air (OTA) techniques such as Direct Far-Field (DFF), Compact Antenna Test Range (CATR), and Near-Field to Far-Field (NFTF) transformations. The paper also discusses the use of electromagnetic scanning, including Relative Element Value (REV) methods, for diagnosing antenna defects without physical connections. Given the increasing volume of testing data, the work highlights the integration of machine learning techniques, including deep neural networks and convolutional networks, for defect classification, big data analysis for pattern detection, and predictive analytics for forecasting antenna failures. Special attention is given to how artificial intelligence methods enhance the effectiveness and accuracy of defect diagnosis in modern 5G systems.
In conclusion, the study shows that the growing complexity of active antenna systems in 5G networks necessitates the evolution of testing methodologies. Traditional conductive approaches are no longer viable for large-scale production, and non-invasive OTA testing has become the standard. Electromagnetic scanning, combined with machine learning techniques, significantly improves defect detection rates and diagnostic accuracy. Integrating intelligent diagnostic methods into the 5G antenna testing process enables better quality control, reduced production losses, and enhanced reliability of telecommunication equipment.
Keywords
5G, electromagnetic testing, OTA testing, machine learning, defect detection
Full Text:
PDF
References
1. Parini, C. G., & Gregson, S. F. (2024, November). Recent advances in compressive sensing for production test and antenna diagnostics of 5G massive MIMO antennas. Presented at the 2024 Annual Symposium of the Antenna Measurement Techniques Association (AMTA). https://nextphasemeasurements.com/wp-content/uploads/2024/11/AMTA_2024_PNF_CS_Paper-ver6.pdf
2. Nielsen, M. H., Zhang, Y., Xue, C., Ren, J., Yin, Y., Shen, M., & Pedersen, G. F. (2022). Robust and efficient fault diagnosis of mm-wave active phased arrays using baseband signal. IEEE Transactions on Antennas and Propagation, 70(7), 5044–5053. https://arxiv.org/abs/2306.04360
3. Sultan, A. (2022, August). 5G system overview. 3GPP. https://www.3gpp.org/technologies/5g-system-overview
4. Raj, T., Mishra, R., Kumar, P., & Kapoor, A. (2023). Advances in MIMO antenna design for 5G: A comprehensive review. Sensors, 23(14), 6329. https://doi.org/10.3390/s23146329
5. LitePoint. (2019). LitePoint’s complete guide to 5G OTA testing. https://www.litepoint.com/wp-content/uploads/2019/07/5G-OTA-article-060419-web.pdf
6. Mano, S., & Katagi, T. (1982). A method for measuring amplitude and phase of each radiating element of a phased array antenna. Electronics and Communications in Japan (Part I: Communications, 65(5), 52–59. https://doi.org/10.1002/ecja.4410650508
7. 3GPP. (2020). NR base station (BS) conformance testing Part 2: Radiated conformance testing (TS 38.141-2 V15.6.0; Release 15).
8. Lin, L., Loughran, K., & Bondarchuk, V. (2024, August). OTA test and calibration of millimeter wave antenna arrays. Microwave Journal. https://www.microwavejournal.com/articles/42445-ota-test-and-calibration-of-millimeter-wave-antenna-arrays
9. O’Shea, T. J., Corgan, J., & Clancy, T. C. (2016). Convolutional radio modulation recognition networks. arXiv preprint arXiv:1602.04105. https://arxiv.org/abs/1602.04105
10. Zheng, G., Zhang, Q., & Li, S. (2021). Failure diagnosis of antenna array using residual convolutional neural network. In 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium (pp. 1–2). https://doi.org/10.23919/ACES-China52398.2021.9581935
Citations
1. Parini C. G., Gregson S. F. Recent Advances in Compressive Sensing for Production Test and Antenna Diagnostics of 5G Massive MIMO Antennas : [презентовано на 2024 Annual Symposium of the Antenna Measurement Techniques Association (AMTA), листопад 2024 р.]. URL: https://nextphasemeasurements.com/wp-content/uploads/2024/11/AMTA_2024_PNF_CS_Paper-ver6.pdf (дата звернення: 13.04.2025).
2. Nielsen M. H., Zhang Y., Xue C., Ren J., Yin Y., Shen M., Pedersen G. F. Robust and Efficient Fault Diagnosis of mm-Wave Active Phased Arrays using Baseband Signal // IEEE Transactions on Antennas and Propagation. 2022. Vol. 70, No. 7. P. 5044–5053. DOI: 10.1109/TAP.2022.3179898. URL: https://arxiv.org/abs/2306.04360 (дата звернення: 13.04.2025).
3. Sultan A. 5G System Overview / 3GPP. (Серпень 2022). URL: https://www.3gpp.org/technologies/5g-system-overview (дата звернення: 14.04.2025).
4. Raj T., Mishra R., Kumar P., Kapoor A. Advances in MIMO Antenna Design for 5G: A Comprehensive Review. Sensors. 2023. Vol. 23, No. 14. Article ID 6329. DOI: 10.3390/s23146329. URL: https://www.mdpi.com/1424-8220/23/14/6329 (дата звернення: 14.04.2025)
5. LitePoint. LitePoint’s Complete Guide to 5G OTA Testing. 2019. URL: https://www.litepoint.com/wp-content/uploads/2019/07/5G-OTA-article-060419-web.pdf (дата звернення: 12.04.2025).
6. Mano S., Katagi T. A method for measuring amplitude and phase of each radiating element of a phased array antenna // Electronics and Communications in Japan (Part I: Communications). 1982. Vol. 65, No. 5. P. 52–59. DOI: 10.1002/ecja.4410650508.
7. 3GPP Technical Specification Group Radio Access Network. NR Base Station (BS) Conformance Testing Part 2: Radiated Conformance Testing. Release 15. TS 38.141-2 V15.6.0. 2020.
8. Lin L., Loughran K., Bondarchuk V. OTA Test and Calibration of Millimeter Wave Antenna Arrays. Microwave Journal. (Серпень 2024). URL: https://www.microwavejournal.com/articles/42445-ota-test-and-calibration-of-millimeter-wave-antenna-arrays (дата звернення: 17.04.2025).
9. O’Shea T. J., Corgan J., Clancy T. C. Convolutional Radio Modulation Recognition Networks. arXiv preprint arXiv:1602.04105. 2016. URL: https://arxiv.org/abs/1602.04105 (дата звернення: 15.04.2025).
10. Zheng G., Zhang Q., Li S. Failure Diagnosis of Antenna Array Using Residual Convolutional Neural Network. 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium. 2021. P. 1–2. DOI:10.23919/ACES-China52398.2021.9581935
Copyright (c) 2025 Viktor Bondarchuk, Anatolii Matsui, Viktor Kalich
Analysis of Electromagnetic Testing and Defect Detection Tools for 5G Generation Radio Antennas
About the Authors
Viktor Bondarchuk, PhD student in Automation, computer-integrated technologies and robotics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, https://orcid.org/0000-0002-9710-3537, e-mail: barbaross2@ukr.net
Anatolii Matsui, Professor, Doctor of technical sciences, Associate Professor of the Department of Production Process Automation, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0001-5544-0175, e-mail: matsuyan@ukr.net
Viktor Kalich, Professor, Candidate of Technical Sciences, Professor of Production Processes Automation Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-7625-9022, e-mail: vmk041954@gmail.com.
Abstract
Keywords
Full Text:
PDFReferences
1. Parini, C. G., & Gregson, S. F. (2024, November). Recent advances in compressive sensing for production test and antenna diagnostics of 5G massive MIMO antennas. Presented at the 2024 Annual Symposium of the Antenna Measurement Techniques Association (AMTA). https://nextphasemeasurements.com/wp-content/uploads/2024/11/AMTA_2024_PNF_CS_Paper-ver6.pdf
2. Nielsen, M. H., Zhang, Y., Xue, C., Ren, J., Yin, Y., Shen, M., & Pedersen, G. F. (2022). Robust and efficient fault diagnosis of mm-wave active phased arrays using baseband signal. IEEE Transactions on Antennas and Propagation, 70(7), 5044–5053. https://arxiv.org/abs/2306.04360
3. Sultan, A. (2022, August). 5G system overview. 3GPP. https://www.3gpp.org/technologies/5g-system-overview
4. Raj, T., Mishra, R., Kumar, P., & Kapoor, A. (2023). Advances in MIMO antenna design for 5G: A comprehensive review. Sensors, 23(14), 6329. https://doi.org/10.3390/s23146329
5. LitePoint. (2019). LitePoint’s complete guide to 5G OTA testing. https://www.litepoint.com/wp-content/uploads/2019/07/5G-OTA-article-060419-web.pdf
6. Mano, S., & Katagi, T. (1982). A method for measuring amplitude and phase of each radiating element of a phased array antenna. Electronics and Communications in Japan (Part I: Communications, 65(5), 52–59. https://doi.org/10.1002/ecja.4410650508
7. 3GPP. (2020). NR base station (BS) conformance testing Part 2: Radiated conformance testing (TS 38.141-2 V15.6.0; Release 15).
8. Lin, L., Loughran, K., & Bondarchuk, V. (2024, August). OTA test and calibration of millimeter wave antenna arrays. Microwave Journal. https://www.microwavejournal.com/articles/42445-ota-test-and-calibration-of-millimeter-wave-antenna-arrays
9. O’Shea, T. J., Corgan, J., & Clancy, T. C. (2016). Convolutional radio modulation recognition networks. arXiv preprint arXiv:1602.04105. https://arxiv.org/abs/1602.04105
10. Zheng, G., Zhang, Q., & Li, S. (2021). Failure diagnosis of antenna array using residual convolutional neural network. In 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium (pp. 1–2). https://doi.org/10.23919/ACES-China52398.2021.9581935
Citations
1. Parini C. G., Gregson S. F. Recent Advances in Compressive Sensing for Production Test and Antenna Diagnostics of 5G Massive MIMO Antennas : [презентовано на 2024 Annual Symposium of the Antenna Measurement Techniques Association (AMTA), листопад 2024 р.]. URL: https://nextphasemeasurements.com/wp-content/uploads/2024/11/AMTA_2024_PNF_CS_Paper-ver6.pdf (дата звернення: 13.04.2025).
2. Nielsen M. H., Zhang Y., Xue C., Ren J., Yin Y., Shen M., Pedersen G. F. Robust and Efficient Fault Diagnosis of mm-Wave Active Phased Arrays using Baseband Signal // IEEE Transactions on Antennas and Propagation. 2022. Vol. 70, No. 7. P. 5044–5053. DOI: 10.1109/TAP.2022.3179898. URL: https://arxiv.org/abs/2306.04360 (дата звернення: 13.04.2025).
3. Sultan A. 5G System Overview / 3GPP. (Серпень 2022). URL: https://www.3gpp.org/technologies/5g-system-overview (дата звернення: 14.04.2025).
4. Raj T., Mishra R., Kumar P., Kapoor A. Advances in MIMO Antenna Design for 5G: A Comprehensive Review. Sensors. 2023. Vol. 23, No. 14. Article ID 6329. DOI: 10.3390/s23146329. URL: https://www.mdpi.com/1424-8220/23/14/6329 (дата звернення: 14.04.2025)
5. LitePoint. LitePoint’s Complete Guide to 5G OTA Testing. 2019. URL: https://www.litepoint.com/wp-content/uploads/2019/07/5G-OTA-article-060419-web.pdf (дата звернення: 12.04.2025).
6. Mano S., Katagi T. A method for measuring amplitude and phase of each radiating element of a phased array antenna // Electronics and Communications in Japan (Part I: Communications). 1982. Vol. 65, No. 5. P. 52–59. DOI: 10.1002/ecja.4410650508.
7. 3GPP Technical Specification Group Radio Access Network. NR Base Station (BS) Conformance Testing Part 2: Radiated Conformance Testing. Release 15. TS 38.141-2 V15.6.0. 2020.
8. Lin L., Loughran K., Bondarchuk V. OTA Test and Calibration of Millimeter Wave Antenna Arrays. Microwave Journal. (Серпень 2024). URL: https://www.microwavejournal.com/articles/42445-ota-test-and-calibration-of-millimeter-wave-antenna-arrays (дата звернення: 17.04.2025).
9. O’Shea T. J., Corgan J., Clancy T. C. Convolutional Radio Modulation Recognition Networks. arXiv preprint arXiv:1602.04105. 2016. URL: https://arxiv.org/abs/1602.04105 (дата звернення: 15.04.2025).
10. Zheng G., Zhang Q., Li S. Failure Diagnosis of Antenna Array Using Residual Convolutional Neural Network. 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium. 2021. P. 1–2. DOI:10.23919/ACES-China52398.2021.9581935