DOI: https://doi.org/10.32515/2664-262X.2025.11(42).1.236-2425

The Impact of Mechanical Losses on Engine Power of a Wheeled Vehicle under Cylinder Deactivation

Andrii Molodan, Oleksandr Polyanskyi, Mykola Artomov, Oleh Pushkarenko

About the Authors

Andrii Molodan, Professor, Doctor in Technics (Doctor of Technical Sciences), Kharkiv National Automobile and Higway University, Kharkiv, Ukraine, Україна, e-mail: tmirm@ukr.net, ORCID ID: 0000-0002-0017-740X

Oleksandr Polyanskyi, Professor, Doctor in Technics (Doctor of Technical Sciences), Kharkiv National Automobile and Higway University, Kharkiv, Ukraine, e-mail: khadi.pas@gmail.com, ORCID ID: 0000-0003-0407-6435

Mykola Artomov, Professor, Doctor in Technics (Doctor of Technical Sciences), State University of Biotechnology, Kharkiv, Ukraine, e-mail: artiomovprof@ukr.net, ORCID ID: 0000-0002-2947-2664

Oleh Pushkarenko, post-graduate, State University of Biotechnology, Kharkiv, Ukraine, e-mail: oleggranit10011987@ukr.net, ORCID ID: 0009-0009-2995-977X

Abstract

A methodology for calculating mechanical losses in internal combustion engines has been proposed, enabling the assessment of the influence of the number of deactivated cylinders on the effective power output of a wheeled vehicle engine with an accuracy of approximately 10%. This method allows for the estimation of mechanical power losses and the mechanical efficiency (mechanical efficiency coefficient) under varying engine operating conditions. It has been determined that when half of the engine cylinders are deactivated, the nominal power output decreases to approximately 35–40% of its full-capacity level. The discrepancy between the experimental and calculated values of the mechanical loss power change coefficient does not exceed 8%. At the same time, the deviation between the calculated and experimental values of the engine load coefficient based on power remains within 5%. Additionally, it has been established that mechanical efficiency increases by up to 7% when the engine is operated at a 48% load level, which indicates improved energy utilization under partial load conditions. Furthermore, it was observed that as the number of deactivated cylinders increases, the magnitude of mechanical power losses correspondingly increases, while the mechanical efficiency of the engine decreases. This is primarily attributed to the redistribution of internal mechanical resistances within the engine and the non-linear behavior of frictional forces and parasitic losses under partial load regimes. A clear correlation between the mechanical efficiency and the effective engine power has been identified. Specifically, an increase in the number of deactivated cylinders (as a factor variable) leads to a rise in mechanical losses (as a response variable) and a reduction in mechanical efficiency. These findings provide a theoretical and practical foundation for optimizing engine control strategies in variable load conditions and contribute to enhancing overall fuel efficiency and operational performance of wheeled vehicles.

Keywords

variation, engine power, mechanical losses, wheeled vehicle, engine, cylinder deactivation

Full Text:

PDF

References

1. Kutsiy, P. V. (2015). Polipshennya ekspluatatsiynikh pokaznikiv transportnikh zasobiv v neustalenikh rezhimakh optimizatsiyeyu sposobu rehulyuvannya dizeliv [Dis. kand. tekhn. nauk, NTU]. http://diser.ntu.edu.ua/Kutsyi_dis.pdf [in Ukrainian].

2. Volvo Group. (2020). Diesel engine load monitoring in agricultural tractors (Technical report). Volvo Group R&D.

3. Makarewicz, G., & Tomaszewski, F. (2021). Analysis of mechanical losses in tractor diesel engines under partial load. Journal of Mechanical Engineering, 67(3), 245–252.

4. Jankowski, R. (2022). Optimizing tractor engine efficiency under variable load conditions. Agricultural Engineering International: CIGR Journal, 24(4), 137–145. cigrjournal.org/index.php/Ejounral/article/view/7447.

5. European Commission. (2021). Best Available Techniques Reference Document for Energy Efficiency (BREF). JRC Science Hub. https://eippcb.jrc.ec.europa.eu/reference/energy-efficiency.

6. International Energy Agency. (2023). Energy efficiency 2023: Energy efficiency indicators and trends [Report]. https://www.iea.org/reports/energy-efficiency-2023.

7. Popescu, A., & Vasile, A. (2019). Modern methods for estimation of mechanical losses in internal combustion engines. Romanian Journal of Automotive Engineering, 15(1), 29–36.

8. Molodan, A. (2021). Naukovi osnovy zabezpechennia nadiinosti i funktsionalnoi stabilitii kolisnykh mashyn v rezhymi vidkliuchennia chastyny tsylindriv [Doctoral dissertaition, KhNADU]. https://www.khadi.kharkov.ua/fileadmin/P_Vchena_rada/VR_64_059_02/dis_Molodan.pdf [in Ukrainian].

9. Zalewski, K. (2021). Condition monitoring of the piston-cylinder group in diesel engines using gas flow diagnostics. Mechanical Systems and Signal Processing, 151, Article 107356. doi.org/10.1016/j.ymssp.2020.107356.

10. Kwiatkowski, T., & Nowak, M. (2020). Study of diesel engine regulation through fuel injection bypass systems. Energy Conversion and Management, 213, Article 112785. doi.org/10.1016/j.enconman.2020.112785.

Citations

1. Куций П. В. Поліпшення експлуатаційних показників транспортних засобів в неусталених режимах оптимізацією способу регулювання дизелів : дис. на здобуття наук. ступеня канд. техн. наук : 05.22.20 : захист 06.11.2015 / наук. кер. А. Г. Говорун. Київ: НТУ, 2015. 206 с.

2. Volvo Group. Diesel engine load monitoring in agricultural tractors : technical report // Volvo Group R&D / Göteborg : Volvo Group, 2020. 35 p.

3. Makarewicz G., Tomaszewski F. Analysis of mechanical losses in tractor diesel engines under partial load. Journal of Mechanical Engineering. 2021. Vol. 67, No. 3. P. 245–252.

4. Jankowski R. Optimizing tractor engine efficiency under variable load conditions. Agricultural Engineering International. CIGR Journal. 2022. Vol. 24, No. 4. P. 137–145.

5. European Commission. Best Available Techniques Reference Document for Energy Efficiency (BREF) [Електронний ресурс] : reference document // European Commission, Joint Research Centre / Brussels : JRC Science Hub, 2021. Режим доступу: https://eippcb.jrc.ec.europa.eu/reference/energy-efficiency

6. International Energy Agency (IEA). Energy Efficiency 2023: Energy Efficiency Indicators and Trends : report // International Energy Agency / Paris : IEA, 2023. URL: www.iea.org/reports/energy-efficiency-2023.

7. Popescu A., Vasile A. Modern methods for estimation of mechanical losses in internal combustion engines. Romanian Journal of Automotive Engineering. 2019. Vol. 15, No. 1. P. 29–36.

8. Молодан А. О. Наукові основи забезпечення надійності і функціональної стабільності колісних машин в режимі відключення частини циліндрів : дис. на здобуття наук. ступеня д-р техн. наук : 05.22.20 : захист 12.05.2021 / наук. кер. О.С. Полянський. Харків: ХНАДУ, 2021. 387 с.

9. Zalewski K. Condition monitoring of the piston-cylinder group in diesel engines using gas flow diagnostics. Mechanical Systems and Signal Processing. 2021. Vol. 151. Article 107356.

10. Kwiatkowski T., Nowak M. Study of diesel engine regulation through fuel injection bypass systems // Energy Conversion and Management / 2020. Vol. 213. Article 112785.

Copyright (c) 2025 Andrii Molodan, Oleksandr Polyanskyi, Mykola Artomov, Oleh Pushkarenko