DOI: https://doi.org/10.32515/2664-262X.2025.11(42).1.190-197
Methodology for Studying the Current-Voltage Characteristics of Solar Cells in Artificial Conditions
About the Authors
Olena Holyk, PhD in Technics (Candidate of Technical Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: degoelena@gmail.com, ORCID ID: 0000-0001-5308-8227
Roman Zhesan, PhD in Technics (Candidate of Technical Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: zherom@ukr.net, ORCID ID: 0000-0002-9212-7361
Korsikov Oleksandr, post-graduate, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: korsikov.oleksandr@icloud.com, ORCID ID: 0009-0006-5342-1767
Nerush Oleksandr, post-graduate, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: ale.nerush@gmail.com, ORCID ID: 0009-0003-4713-4583
Abstract
The efficiency and productivity of converting solar energy into electricity using photovoltaic converters is significantly affected by the ambient temperature. That is, the ability of a photovoltaic cell to convert sunlight into electricity is most significantly affected by the operating temperature of the cell. And as a result, this affects the energy efficiency of solar-based power supply systems. Temperature has the greatest effect on the short-circuit current and open-circuit voltage of a photovoltaic cell. With increasing temperature, the open-circuit voltage can decrease significantly, and the short-circuit current increases slightly. However, the overall change in these parameters leads to a decrease in the maximum output power of the photovoltaic cell. Currently, there are no universal methods for regulating the impact of ambient temperature on photovoltaic systems. Therefore, for the correct design and installation of photovoltaic systems, it is necessary to pre-model their operation, ensuring the maximum possible range of optimal temperatures. During modeling, it is advisable to study the current-voltage characteristics and spectral characteristics of the photovoltaic cell. The purpose of the article is to analyze the methods and means of constructing and studying the current-voltage characteristics of silicon photovoltaic cells under different conditions of changing illumination and ambient temperature.
To achieve this goal, the article proposes a structure for a measuring instrument installation for studying the current-voltage characteristics of photovoltaic cells in laboratory conditions. The installation should include: a solar radiation simulator, a cryostat, a calibrator-multimeter, a temperature controller, and a personal computer with appropriate software. Using a solar radiation simulator, the surface of the photovoltaic cell must be irradiated with different intensities and illumination. In this case, adjustments can be made using spectral filters. During simulation, measurements must be constantly performed for the entire current-voltage characteristic. The presence of a temperature control system (cryostat) in the circuit makes it possible to provide conditions for changing the ambient temperature. In addition, the installation includes a device for smoothly adjusting the distance between the sample and the solar radiation simulator. A calibrator-multimeter is used to generate and measure current, voltage, and resistance. The article presents a diagram of the heterostructure of a silicon photovoltaic cell.
Since the current-voltage characteristic of a photovoltaic cell has an s-shaped bend, which creates a potential barrier between the zones of the main charge carriers, during modeling it is necessary to achieve such optimal values of temperature and illumination at which the height of the potential barrier will change and, as a result, it will be possible to get rid of the s-shaped bend of the current-voltage characteristic of the photovoltaic cell. The results of such modeling can later be used in the design at the initial stage of installation of power supply systems based on solar energy.
Keywords
solar cell, volt-ampere characteristic, spectral range, temperature, current
Full Text:
PDF
References
1. Holyk, O., Zhesan, R., Volkov, I., Chekanov, O., & Berezjuk, I. (2020). Energhozberezhennja ta vykorystannja ponovljuvanykh dzherel energhiji. Chastyna 1. Lysenko V.F.
2. Tsykh, V., Kulchak, A., & Yavorskyi, A. (2024). Analysis of research on the influence of temperature on the degradation and efficiency of solar panels. Power Engineering: economics, technique, ecology, (2). https://doi.org/10.20535/1813-5420.2.2024.303071 [in Ukraine].
3. Bozhko, K. M., Ghurenok, Gh. S., & Zashhepkina, N. M. (2016). Research of the bench means for measuring current-voltage characteristics of solar cells and batteries. ScienceRise, 11, 30–32. https://doi.org/10.15587/2313-8416.2016.84426.
4. Majevsjkyj, D. A., Vynakov, O. F., & Ketrarj, O. A. (2024). Eksperymentaljnyj analiz roboty sonjachnykh panelej iz riznymy kharakterystykamy. Elektrotekhnichni ta komp'juterni systemy, 41(117), 12–22. https://eltecs.op.edu.ua/index.php/journal/article/download/3285/1189/.
5. Bezruchko, K. V., Knysh, L. I., & Sinchenko, S. V. (2020). Zabezpechennja tochnosti opysu kharakterystyk ghrup fotoperetvorjuvachiv i fotoelektrychnykh batarej na osnovi ciljovykh eksperymentiv na kompleksnomu obladnanni. Vidnovluvana energetika, (3(62)), 35–41. doi.org/10.36296/1819-8058.2020.3(62). 35-41.
6. Ndegwa, R., Simiyu, J., Ayieta, E., & Odero, N. (2020). A Fast and Accurate Analytical Method for Parameter Determination of a Photovoltaic System Based on Manufacturer’s Data. Journal of Renewable Energy, 2020, 1–18. https://doi.org/10.1155/2020/7580279.
7. Bozhko, K. M., & Mushket, K. Ja. (2023). Bezkontaktnyj metod vymirjuvannja shuntovogho oporu okremykh sonjachnykh elementiv u skladi paneli. Tekhnichna inzhenerija, (2(92)), 174–181. https://doi.org/10.26642/ten-2023-2(92)-174-181.
8. Budanov, P., Kupriyanov, O., Melnykov, V., & Kononov, V. (2024). Qualimetric method for assessing quantitative and qualitative parameters of a solar cell. Машинобудування, (34), 92–103. https://periodicals.karazin.ua/engineering/article/view/25095/22615 [in Ukraine].
9. Mayer, M. J. (2021). Effects of the meteorological data resolution and aggregation on the optimal design of photovoltaic power plants. Energy Conversion and Management, 241, 114313. doi.org/10.1016/j.enconman.2021.114313.
10. Hossain, R., Ahmed, A. J., Islam, S. M. K. N., Saha, N., Debnath, P., Kouzani, A. Z., & Mahmud, M. A. P. (2020). New Design of Solar Photovoltaic and Thermal Hybrid System for Performance Improvement of Solar Photovoltaic. International Journal of Photoenergy, 2020, 1–6. https://doi.org/10.1155/2020/8825489
11. Azimi-Nam, S., & Farhani, F. (2017). Effect of Temperature on Electrical Parameters of Phosphorous Spin–on Diffusion of Polysilicon Solar Cells. Journal of Renewable Energy and Environment, 4(1), 41–45. https://www.jree.ir/article_70105_08c49abfb6019aa4d7f0c12b508a998d.pdf.
12. How Temperature Impacts Solar Cell Efficiency - Solar N Plus. (2024, 2 червня). Solar N Plus. https://www.solarnplus.com/how-temperature-impacts-solar-cell-efficiency/
13. Sensornyj kalibrator-muljtymetr 6,5 rozrjadiv Keithley 2450. (b. d.). Tekhenkom – vymirjuvaljni prylady ta obladnannja (Ukrajina, Kyjiv). https://cutt.ly/SrwPyzzf.
14. Stend laboratornyj "Imitator sonjachnogho elementa" GES-100 OOO "SPEKTRO LAB" - obladnannja dlja laboratorij https://spectrolab.com.ua/ua/p1958350888-stend-laboratornyj-imitator.html
15. Symuljatory sonjachnogho svitla - TOV «Seltok Fotoniks». (b. d.). TOV «Seltok Fotoniks» - pershyj profesijnyj katalogh optoelektroniky. https://seltokphotonics.com/catalog/analytical-laboratory-equipment/solar-simulator/?srsltid=AfmBOorZmQG8_bwSqXK-Uk0mEXFjXGg2kWlnXWy1UbNLg4sbTNjevE_u.
16. Innovaciji v optyci. Sonjachnyj symuljator. (b. d.). Wavelength opto-electronic. https://wavelength-oe.com/uk/innovation-in-optics-solar-simulator/.
Citations
1. Енергозбереження та використання поновлюваних джерел енергії. Частина 1 : навч. посіб. / О. П. Голик, Р. В. Жесан, І. В. Волков [та ін.]. Кропивницький : Лисенко В.Ф., 2020. 192 с. URL: https://dspace.kntu.kr.ua/handle/123456789/9295.
2. Tsykh V., Kulchak A., Yavorskyi A. Analysis of research on the influence of temperature on the degradation and efficiency of solar panels. Power Engineering: economics, technique, ecology. 2024. No. 2. URL: https://doi.org/10.20535/1813-5420.2.2024.303071.
3. Божко К. М., Гуренок Г. С., Защепкіна Н. М. Research of the bench means for measuring current-voltage characteristics of solar cells and batteries. ScienceRise. 2016. Vol. 11. P. 30–32. doi.org/10.15587/2313-8416.2016.84426 .
4. Маєвський Д. А., Винаков О. Ф., Кетрарь О. А. Експериментальний аналіз роботи сонячних панелей із різними характеристиками. Електротехнічні та комп’ютерні системи. 2024. Т. 41, № 117. С. 12–22. URL: https://eltecs.op.edu.ua/index.php/journal/article/download/3285/1189/.
5. Безручко К. В., Книш Л. І., Сінченко С. В. Забезпечення точності опису характеристик груп фотоперетворювачів і фотоелектричних батарей на основі цільових експериментів на комплексному обладнанні. Vidnovluvana energetika. 2020. № 3(62). С. 35–41. URL: https://doi.org/10.36296/1819-8058.2020.3(62).35-41.
6. A Fast and Accurate Analytical Method for Parameter Determination of a Photovoltaic System Based on Manufacturer’s Data / R. Ndegwa et al. Journal of Renewable Energy. 2020. Vol. 2020. P. 1–18. URL: https://doi.org/10.1155/2020/7580279 .
7. Божко К. М., Мушкет К. Я. Безконтактний метод вимірювання шунтового опору окремих сонячних елементів у складі панелі. Технічна інженерія. 2023. № 2(92). С. 174–181. https://doi.org/10.26642/ten-2023-2(92)-174-181 .
8. Budanov P. Qualimetric method for assessing quantitative and qualitative parameters of a solar cell. Машинобудування. 2024. No. 34. P. 92–103. URL: periodicals.karazin.ua/engineering/article/view/25095/22615.
9. Mayer M. J. Effects of the meteorological data resolution and aggregation on the optimal design of photovoltaic power plants. Energy Conversion and Management. 2021. Vol. 241. P. 114313. URL: https://doi.org/10.1016/j.enconman.2021.114313.
10. New Design of Solar Photovoltaic and Thermal Hybrid System for Performance Improvement of Solar Photovoltaic / R. Hossain et al. International Journal of Photoenergy. 2020. Vol. 2020. P. 1–6. DOI: https://doi.org/10.1155/2020/8825489.
11. Azimi-Nam S., Farhani F. Effect of Temperature on Electrical Parameters of Phosphorous Spin–on Diffusion of Polysilicon Solar Cells. Journal of Renewable Energy and Environment. 2017. Vol. 4, no. 1. P. 41–45. URL: https://www.jree.ir/article_70105_08c49abfb6019aa4d7f0c12b508a998d.pdf.
12. How Temperature Impacts Solar Cell Efficiency - Solar N Plus. Solar N Plus. URL: https://www.solarnplus.com/how-temperature-impacts-solar-cell-efficiency/
13. Сенсорний калібратор-мультиметр 6,5 розрядів Keithley 2450. Техенком – вимірювальні прилади та обладнання. URL: https://cutt.ly/SrwPyzzf.
14. Стенд лабораторний "Імітатор сонячного елемента" GES-100. ООО "СПЕКТРО ЛАБ" - обладнання для лабораторій. URL: https://spectrolab.com.ua/ua/p1958350888-stend-laboratornyj-imitator.html .
15. Симулятори сонячного світла - ТОВ «Селток Фотонікс». ТОВ «Селток Фотонікс» - перший професійний каталог оптоелектроніки. URL: https://seltokphotonics.com/catalog/analytical-laboratory-equipment/solar-simulator/?srsltid=AfmBOorZmQG8_bwSqXK-Uk0mEXFjXGg2kWlnXWy1UbNLg4sbTNjevE_u.
16. Інновації в оптиці. Сонячний симулятор. Wavelength opto-electronic. URL: https://wavelength-oe.com/uk/innovation-in-optics-solar-simulator/.
Copyright (c) 2025 Olena Holyk, Roman Zhesan, Korsikov Oleksandr, Nerush Oleksandr
Methodology for Studying the Current-Voltage Characteristics of Solar Cells in Artificial Conditions
About the Authors
Olena Holyk, PhD in Technics (Candidate of Technical Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: degoelena@gmail.com, ORCID ID: 0000-0001-5308-8227
Roman Zhesan, PhD in Technics (Candidate of Technical Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: zherom@ukr.net, ORCID ID: 0000-0002-9212-7361
Korsikov Oleksandr, post-graduate, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: korsikov.oleksandr@icloud.com, ORCID ID: 0009-0006-5342-1767
Nerush Oleksandr, post-graduate, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: ale.nerush@gmail.com, ORCID ID: 0009-0003-4713-4583
Abstract
Keywords
Full Text:
PDFReferences
1. Holyk, O., Zhesan, R., Volkov, I., Chekanov, O., & Berezjuk, I. (2020). Energhozberezhennja ta vykorystannja ponovljuvanykh dzherel energhiji. Chastyna 1. Lysenko V.F.
2. Tsykh, V., Kulchak, A., & Yavorskyi, A. (2024). Analysis of research on the influence of temperature on the degradation and efficiency of solar panels. Power Engineering: economics, technique, ecology, (2). https://doi.org/10.20535/1813-5420.2.2024.303071 [in Ukraine].
3. Bozhko, K. M., Ghurenok, Gh. S., & Zashhepkina, N. M. (2016). Research of the bench means for measuring current-voltage characteristics of solar cells and batteries. ScienceRise, 11, 30–32. https://doi.org/10.15587/2313-8416.2016.84426.
4. Majevsjkyj, D. A., Vynakov, O. F., & Ketrarj, O. A. (2024). Eksperymentaljnyj analiz roboty sonjachnykh panelej iz riznymy kharakterystykamy. Elektrotekhnichni ta komp'juterni systemy, 41(117), 12–22. https://eltecs.op.edu.ua/index.php/journal/article/download/3285/1189/.
5. Bezruchko, K. V., Knysh, L. I., & Sinchenko, S. V. (2020). Zabezpechennja tochnosti opysu kharakterystyk ghrup fotoperetvorjuvachiv i fotoelektrychnykh batarej na osnovi ciljovykh eksperymentiv na kompleksnomu obladnanni. Vidnovluvana energetika, (3(62)), 35–41. doi.org/10.36296/1819-8058.2020.3(62). 35-41.
6. Ndegwa, R., Simiyu, J., Ayieta, E., & Odero, N. (2020). A Fast and Accurate Analytical Method for Parameter Determination of a Photovoltaic System Based on Manufacturer’s Data. Journal of Renewable Energy, 2020, 1–18. https://doi.org/10.1155/2020/7580279.
7. Bozhko, K. M., & Mushket, K. Ja. (2023). Bezkontaktnyj metod vymirjuvannja shuntovogho oporu okremykh sonjachnykh elementiv u skladi paneli. Tekhnichna inzhenerija, (2(92)), 174–181. https://doi.org/10.26642/ten-2023-2(92)-174-181.
8. Budanov, P., Kupriyanov, O., Melnykov, V., & Kononov, V. (2024). Qualimetric method for assessing quantitative and qualitative parameters of a solar cell. Машинобудування, (34), 92–103. https://periodicals.karazin.ua/engineering/article/view/25095/22615 [in Ukraine].
9. Mayer, M. J. (2021). Effects of the meteorological data resolution and aggregation on the optimal design of photovoltaic power plants. Energy Conversion and Management, 241, 114313. doi.org/10.1016/j.enconman.2021.114313.
10. Hossain, R., Ahmed, A. J., Islam, S. M. K. N., Saha, N., Debnath, P., Kouzani, A. Z., & Mahmud, M. A. P. (2020). New Design of Solar Photovoltaic and Thermal Hybrid System for Performance Improvement of Solar Photovoltaic. International Journal of Photoenergy, 2020, 1–6. https://doi.org/10.1155/2020/8825489
11. Azimi-Nam, S., & Farhani, F. (2017). Effect of Temperature on Electrical Parameters of Phosphorous Spin–on Diffusion of Polysilicon Solar Cells. Journal of Renewable Energy and Environment, 4(1), 41–45. https://www.jree.ir/article_70105_08c49abfb6019aa4d7f0c12b508a998d.pdf.
12. How Temperature Impacts Solar Cell Efficiency - Solar N Plus. (2024, 2 червня). Solar N Plus. https://www.solarnplus.com/how-temperature-impacts-solar-cell-efficiency/
13. Sensornyj kalibrator-muljtymetr 6,5 rozrjadiv Keithley 2450. (b. d.). Tekhenkom – vymirjuvaljni prylady ta obladnannja (Ukrajina, Kyjiv). https://cutt.ly/SrwPyzzf.
14. Stend laboratornyj "Imitator sonjachnogho elementa" GES-100 OOO "SPEKTRO LAB" - obladnannja dlja laboratorij https://spectrolab.com.ua/ua/p1958350888-stend-laboratornyj-imitator.html
15. Symuljatory sonjachnogho svitla - TOV «Seltok Fotoniks». (b. d.). TOV «Seltok Fotoniks» - pershyj profesijnyj katalogh optoelektroniky. https://seltokphotonics.com/catalog/analytical-laboratory-equipment/solar-simulator/?srsltid=AfmBOorZmQG8_bwSqXK-Uk0mEXFjXGg2kWlnXWy1UbNLg4sbTNjevE_u.
16. Innovaciji v optyci. Sonjachnyj symuljator. (b. d.). Wavelength opto-electronic. https://wavelength-oe.com/uk/innovation-in-optics-solar-simulator/.
Citations
1. Енергозбереження та використання поновлюваних джерел енергії. Частина 1 : навч. посіб. / О. П. Голик, Р. В. Жесан, І. В. Волков [та ін.]. Кропивницький : Лисенко В.Ф., 2020. 192 с. URL: https://dspace.kntu.kr.ua/handle/123456789/9295.
2. Tsykh V., Kulchak A., Yavorskyi A. Analysis of research on the influence of temperature on the degradation and efficiency of solar panels. Power Engineering: economics, technique, ecology. 2024. No. 2. URL: https://doi.org/10.20535/1813-5420.2.2024.303071.
3. Божко К. М., Гуренок Г. С., Защепкіна Н. М. Research of the bench means for measuring current-voltage characteristics of solar cells and batteries. ScienceRise. 2016. Vol. 11. P. 30–32. doi.org/10.15587/2313-8416.2016.84426 .
4. Маєвський Д. А., Винаков О. Ф., Кетрарь О. А. Експериментальний аналіз роботи сонячних панелей із різними характеристиками. Електротехнічні та комп’ютерні системи. 2024. Т. 41, № 117. С. 12–22. URL: https://eltecs.op.edu.ua/index.php/journal/article/download/3285/1189/.
5. Безручко К. В., Книш Л. І., Сінченко С. В. Забезпечення точності опису характеристик груп фотоперетворювачів і фотоелектричних батарей на основі цільових експериментів на комплексному обладнанні. Vidnovluvana energetika. 2020. № 3(62). С. 35–41. URL: https://doi.org/10.36296/1819-8058.2020.3(62).35-41.
6. A Fast and Accurate Analytical Method for Parameter Determination of a Photovoltaic System Based on Manufacturer’s Data / R. Ndegwa et al. Journal of Renewable Energy. 2020. Vol. 2020. P. 1–18. URL: https://doi.org/10.1155/2020/7580279 .
7. Божко К. М., Мушкет К. Я. Безконтактний метод вимірювання шунтового опору окремих сонячних елементів у складі панелі. Технічна інженерія. 2023. № 2(92). С. 174–181. https://doi.org/10.26642/ten-2023-2(92)-174-181 .
8. Budanov P. Qualimetric method for assessing quantitative and qualitative parameters of a solar cell. Машинобудування. 2024. No. 34. P. 92–103. URL: periodicals.karazin.ua/engineering/article/view/25095/22615.
9. Mayer M. J. Effects of the meteorological data resolution and aggregation on the optimal design of photovoltaic power plants. Energy Conversion and Management. 2021. Vol. 241. P. 114313. URL: https://doi.org/10.1016/j.enconman.2021.114313.
10. New Design of Solar Photovoltaic and Thermal Hybrid System for Performance Improvement of Solar Photovoltaic / R. Hossain et al. International Journal of Photoenergy. 2020. Vol. 2020. P. 1–6. DOI: https://doi.org/10.1155/2020/8825489.
11. Azimi-Nam S., Farhani F. Effect of Temperature on Electrical Parameters of Phosphorous Spin–on Diffusion of Polysilicon Solar Cells. Journal of Renewable Energy and Environment. 2017. Vol. 4, no. 1. P. 41–45. URL: https://www.jree.ir/article_70105_08c49abfb6019aa4d7f0c12b508a998d.pdf.
12. How Temperature Impacts Solar Cell Efficiency - Solar N Plus. Solar N Plus. URL: https://www.solarnplus.com/how-temperature-impacts-solar-cell-efficiency/
13. Сенсорний калібратор-мультиметр 6,5 розрядів Keithley 2450. Техенком – вимірювальні прилади та обладнання. URL: https://cutt.ly/SrwPyzzf.
14. Стенд лабораторний "Імітатор сонячного елемента" GES-100. ООО "СПЕКТРО ЛАБ" - обладнання для лабораторій. URL: https://spectrolab.com.ua/ua/p1958350888-stend-laboratornyj-imitator.html .
15. Симулятори сонячного світла - ТОВ «Селток Фотонікс». ТОВ «Селток Фотонікс» - перший професійний каталог оптоелектроніки. URL: https://seltokphotonics.com/catalog/analytical-laboratory-equipment/solar-simulator/?srsltid=AfmBOorZmQG8_bwSqXK-Uk0mEXFjXGg2kWlnXWy1UbNLg4sbTNjevE_u.
16. Інновації в оптиці. Сонячний симулятор. Wavelength opto-electronic. URL: https://wavelength-oe.com/uk/innovation-in-optics-solar-simulator/.