DOI: https://doi.org/10.32515/2664-262X.2025.11(42).1.108-114

Operational Control of Iron Content in Classifier Overflow Pulp using Gamma Radiation

Albert Azaryan, Dmitriy Shvets, Annait Trachuk, Oleksandr Shvydkyi

About the Authors

Albert Azaryan, Professor, Doctor in Technics (Doctor of Technic Sciences), Kryvyi Rih National University, Kryvyi Rih, Ukraine, e-mail: azaryan325@gmail.com, 0000-0003-0892-8332

Dmitriy Shvets, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Kryvyi Rih National University, Kryvyi Rih, Ukraine, e-mail: dmіtrіy.shvets@knu.edu.uat, 0000-0001-5126-6405

Annait Trachuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Kryvyi Rih National University, Kryvyi Rih, Ukraine, e-mail: trachuk@knu.edu.ua, 0000-0001-6241-1575

Oleksandr Shvydkyi, Software Engineer, LLC “Rudpromgeofizyka”, Kryvyi Rih, Ukraine, e-mail: azarpg@ukr.net

Abstract

The objective of the work is to study the possibility of real-time control of the mass fraction of iron in the multiphase medium using the gamma absorption method. The object of the research is the process of monitoring the iron content in the classifier drain pulp of an ore beneficiation plant. The research subject is the means of controlling the parameters of technological processes in concentrating factories based on nuclear-physical methods. The research methods are statistical analysis and laboratory studies of the factors affecting the accuracy of the gamma absorption method for determining the content of the valuable component in iron ore pulp. During the work, an investigation was conducted on the possibility of real-time control of the iron content in the multiphase medium using the gamma absorption method. A gamma radiation sensor was developed to study the energy spectra of transmitted and scattered gamma radiation from various ionizing radiation sources at the boundaries of the multiphase medium. A device for real-time determination of the iron content in iron ore pulp under the conditions of a concentrating factory was considered, and the influence of disturbing factors on the control accuracy was investigated. Sets of samples were prepared with the iron content characteristic of concentrate, feed ore, and beneficiation tailings. Experimental studies were carried out on the influence of the iron ore pulp density and its solids on the intensity of the registered gamma radiation when using the gamma absorption control method. As a result of the investigations, average values of the intensity sensitivity to changes in iron content for different solid levels in the sample were obtained. The sensitivity of intensity to changes in density at a fixed iron content in the solids was established. It was found that the maximum sensitivity for iron determination is observed at low iron contents, with a minor effect of density (1% change in density ≈ 1.5...2% change in iron content). The experiments confirmed the potential of using the gamma absorption method to determine the iron content only in the case of constant pulp density or introducing a correction for the actual density value.

Keywords

nuclear physics methods, gamma radiation, quality control, pulp

Full Text:

PDF

References

1. Kondratets, V. O., Serbul, O. M., & Matsui, A. M. (2013). Avtomatyzatsiia protsesiv keruvannia rozridzhenniam pulpy pry podribnenni rudy barabannymy mlynamy [Automation of Pulp Dilution Control Processes in Ore Grinding with Drum Mills]. Kirovohrad: KOD [in Ukrainian].

2. Elsayed, E. A. (2017). Overview of ITMK3 process. International Journal of Industrial Engineering Research and Development, 8(2). doi:10.34218/ijierd.8.2.2017.001.

3. Jiang, X., Wang, L., & Shen, F. M. (2013). Shaft Furnace Direct Reduction Technology - Midrex and Energiron. Advanced Materials Research, 805-806, 654–659.

4. Azaryan, A. (2018). Development of the method to operatively control quality of iron ore raw materials at open and underground extraction. Eastern-European Journal of Enterprise Technologies, 5(95), 13–19. doi:10.15587/1729-4061.2018.144003.

5. Dryha, V. V., Shvydkyi, O. V., & Karachaban, A. S. (2011) Quality Control of Iron Ore Raw Materials in Powder Samples Using the DZM3-M1 Device. Yakist mineralnoi syrovyny. Kryvyi Rih, 180-184. [in Ukrainian].

6. Porkuian, O. (2020). Influence of the Magnetic Field on Love Waves Propagation in the Solid Medium. In 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). doi:10.1109/elnano50318.2020.9088802.

7. Azarian, A. A., Dryha, V. V., & Tsybulevskyi, Yu. Yu. (2007). Ukrainian Patent No. 80694.

8. Morkun, V. S., Morkun, N. V., & Tron, V. V. (2017). Automatic control of the ore suspension solid phase parameters using high-energy ultrasound. Radio Electronics, Computer Science, Control, (3), 175–182. doi:10.15588/1607-3274-2017-3-19.

9. Azaryan, A. (2019). Using the intensity of absorbed gamma radiation to control the content of iron in ore. Eastern-European Journal of Enterprise Technologies, 3(5 (99)), 29–35. doi:10.15587/1729-4061.2019.170341.

10. Qin, R., Li, C., Qin, Z., Zhang, Z., & Cai, J. (2024). A Compton scattering background subtraction method of gamma energy spectrum based on Gaussian function convolution. Radiation Physics and Chemistry, 112-202. doi:10.1016/j.radphyschem.2024.112202.

11. Chuong, H. D., Hai Yen, N. T., My Le, N. T., & Tam, H. D. (2020). Determining the density of liquid using gamma scattering method. Applied Radiation and Isotopes, 163, 109-197. doi:10.1016/j.apradiso.2020.109197.

12. Shi, C. (2024). Deep learning based Compton backscatter imaging with scattered X-ray spectrum data: A Monte Carlo study. Radiation Physics and Chemistry, 112–148. doi:10.1016/j.radphyschem.2024.112148

13. Huang, H. (2024). Online analysis of iron ore slurry using PGNAA technology with artificial neural network. Nuclear Engineering and Technology. doi:10.1016/j.net.2024.02.046.

14. Manjunatha, M. (2019). XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores. Journal of Materials Research and Technology, 8(2), 2192–2200. DOI:10.1016/j.jmrt.2019.01.022.

Citations

1. Кондратець В. О., Сербул О. М., Мацуй А. М. Автоматизація процесів керування розрідженням пульпи при подрібненні руди барабанними млинами. Кіровоград: КОД, 2013. 368 с.

2. Elsayed E. A. Overview of ITMK3 process. International Journal of Industrial Engineering Research and Development. 2017. Т. 8, № 2. DOI: 10.34218/ijierd.8.2.2017.001.

3. Jiang X., Wang L., Shen F. M. Shaft Furnace Direct Reduction Technology - Midrex and Energiron. Advanced Materials Research. 2013. Т. 805-806. С. 654–659.

4. Development of the method to operatively control quality of iron ore raw materials at open and underground extraction / A. Azaryan та ін. Eastern-European Journal of Enterprise Technologies. 2018. Т. 5, № 95. С. 13–19. DOI: 10.15587/1729-4061.2018.144003.

5. Дрига В. В., Швидкий О. В., Карачабан А. С. Контроль якості залізорудної сировини в порошкових пробах за допомогою пристрою ДЖМ3-М1. Якість мінеральної сировини. Кривий Ріг, 2011. С. 180-184.

6. Influence of the Magnetic Field on Love Waves Propagation in the Solid Medium / O. Porkuian та ін. 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 22–24 April 2020. 2020. DOI: 10.1109/elnano50318.2020.9088802.

7. Пристрій для оперативного контролю масової частки заліза магнітного у гірській масі: патент 80694 / Азарян А.А., Дрига В.В., Цибулевський Ю.Є.; власник патенту ТОВ «Рудпромгеофізика»

8. Morkun V. S., Morkun N. V., Tron V. V. Automatic control of the ore suspension solid phase parameters using high-energy ultrasound. Radio Electronics, Computer Science, Control. 2017. №. 3. С. 175–182. DOI: 10.15588/1607-3274-2017-3-19.

9. Using the intensity of absorbed gamma radiation to control the content of iron in ore / A. Azaryan та ін. Eastern-European Journal of Enterprise Technologies. 2019. Т. 3, № 5 (99). С. 29–35. DOI: 10.15587/1729-4061.2019.170341.

10. A Compton scattering background subtraction method of gamma energy spectrum based on Gaussian function convolution / R. Qin та ін. Radiation Physics and Chemistry. 2024. С. 112-202. DOI: 10.1016/j.radphyschem.2024.112202.

11. Determining the density of liquid using gamma scattering method / H. D. Chuong та ін. Applied Radiation and Isotopes. 2020. Т. 163. С. 109-197. DOI: 10.1016/j.apradiso.2020.109197.

12. Deep learning based Compton backscatter imaging with scattered X-ray spectrum data: A Monte Carlo study / C. Shi та ін. Radiation Physics and Chemistry. 2024. С. 112–148. DOI: 10.1016/j.radphyschem.2024.112148.

13. Online analysis of iron ore slurry using PGNAA technology with artificial neural network / H. Huang та ін. Nuclear Engineering and Technology. 2024. DOI: 10.1016/j.net.2024.02.046.

14. XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores / M. Manjunatha та ін. Journal of Materials Research and Technology. 2019. Т. 8, № 2. С. 2192–2200. DOI: 10.1016/j.jmrt.2019.01.022.

Copyright (c) 2025 Albert Azaryan, Dmitriy Shvets, Annait Trachuk, Oleksandr Shvydkyi