DOI: https://doi.org/10.32515/2664-262X.2024.10(41).2.131-141

Development of Mechatronic Systems for Targeted Division and Selection of Seed Material

Elchyn Aliiev, Olha Aliieva, Volodymyr Govorukha, Oleksandr Kobets

About the Authors

Elchyn Aliiev, Senior Researcher, Professor, Doctor in Technics (Doctor of Technic Sciences), Dnipro State Agrarian and Economic University, Dnipro, Ukraine, e-mail: aliev@meta.ua, ORCID ID: 0000-0003-2751-6181

Olha Aliieva, , Senior Researcher, PhD, Institute of Oilseed Crops of the National Academy of Agrarian Sciences of Ukraine, Zaporizhzhia, Ukraine, ORCID ID: 0000-0002-2766-7548

Volodymyr Govorukha, Professor, Doctor in TPhysical and Mathematicals (Doctor of TPhysical and Mathematical ), Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID ID: 0000-0002-0936-9272

Oleksandr Kobets, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID ID: 0009-0009-5334-0133

Abstract

One of the key stages in seed material processing is sorting, as seed mixtures typically contain impurities of various origins. These impurities include stems, leaves, mineral inclusions, weed seeds, and damaged seeds of the primary crop. Seed sorting, as a subtask of separation, relies on the physical differences between the components of the mixture. The main physical characteristics of seeds include size, shape, weight, color, density, and others. These properties determine the parameters of modern seed cleaning equipment, influencing its design and operational efficiency. Modern separation methods based on physical and mechanical properties have been reviewed, focusing on aerodynamic characteristics (pneumatic columns), size (screens of various shapes), density (pneumo-vibratory separators), elasticity, electrophysical properties (dielectric separators), and color (photo separators). Technological lines for the separation of small-seeded crops have been presented, taking these parameters into account. The designs of adaptive aerodynamic, vibratory screen, vibro-pneumatic separators, selective seed graders, and photoelectronic separators have been described in detail. These machines are equipped with sensors, electric motors, control units, and software, enabling enhanced productivity and separation quality. For instance, an adaptive aerodynamic separator ensures uniform airflow, promoting efficient mixture separation, while the vibro-pneumatic separator can automatically adjust the inclination of the working surface to optimize the process. The integration of adaptive mechatronic systems into primary seed production processes significantly improves seed quality, reduces energy consumption, and ensures the flexibility of technological lines. Research results confirm the effectiveness of the proposed designs, fostering the development of modern methods for seed material separation. Furthermore, the development and implementation of these advanced systems align with the increasing demand for high-quality seeds in agriculture. The use of adaptive mechatronic systems allows for real-time monitoring and adjustment of separation processes, minimizing human intervention and errors. This not only enhances the precision of sorting but also contributes to sustainable practices by reducing waste and energy usage. In conclusion, the evolution of seed sorting technologies underscores the importance of innovation in agricultural machinery. By leveraging cutting-edge technologies such as photoelectric sorting and pneumatic systems, the agricultural industry can meet the growing challenges of productivity, efficiency, and environmental responsibility. The adoption of these advanced systems promises to elevate the standards of seed processing, ensuring better yields and more sustainable farming practices worldwide.

Keywords

seeds, separation, cleaning, sorting, automation, efficiency, quality

Full Text:

PDF

References

1. DSTU 2240-93. (1993). Nasinnya silʹsʹkohospodarsʹkykh kulʹtur. Sortovi ta posivni yakosti. Tekhnichni umovy [Seeds of agricultural crops. Varietal and sowing qualities. Technical conditions]. Kyiv: Derzhstandart of Ukraine. 74 p. [in Ukrainian].

2. Kyrychenko, V.V. (2016). Osnovy upravlinnya produktsiynym protsesom polʹovykh kulʹtur [Fundamentals of field crop production process management]. Kharkiv. 711 p. [in Ukrainian].

3. Shevchenko, I.A., Lyakh, V.O., Polyakov, O.I., Soroka, A.I., Vedmedeva K.V., Zhuravel, V.M., Makhno Yu.O., Tovstanovskaya T.G., Budilka G.I. (2017). Lʹon oliynyy, hirchytsya. Stratehiya vyrobnytstva oliynoyi syrovyny v Ukrayini (maloposhyreni kulʹtury) [Flaxseed, mustard. Strategy for the production of oilseeds in Ukraine (uncommon crops)]. Institute of Oilseeds of the National Academy of Agrarian Sciences of Ukraine. Zaporizhzhia: STATUS. 44 p. [in Ukrainian].

4. Shevchenko, I.A., Polyakov, O.I., Vedmedeva K.V., Komarova I.B. (2017). Red, safflower, sesame. Ryzhiy, saflor, kunzhut. Stratehiya vyrobnytstva oliynoyi syrovyny v Ukrayini (maloposhyreni kulʹtury). [Strategy for the production of oilseeds in Ukraine (uncommon crops)]. Institute of Oilseeds of the National Academy of Agrarian Sciences of Ukraine. Zaporizhia: STATUS. 40 p. [in Ukrainian].

5. Brandenburg, N. (1977). The principles and practice of seed cleaning: separation with equipment that senses dimension, shape, density, and terminal velocity of seeds. Seed science and technology, 5. 173–186.

6. Jayas, D., Cenkowski, S. (2006). Grain property values and their measurement. Handbook of Industrial Drying. 575–603. DOI: 10.1201/9781420017618.ch24

7. Riahi, E., Ramaswamy, H. (2003). Structure and composition of cereal grains and legumes. Handbook of Postharvest Technology. 17–40. DOI: 10.1201/9780203911310.pt1

8. Sablani, S.S., Ramaswamy, H.S. (2003). Physicial and thermal properties of cereal grains. Handbook of Postharvest Technology. 17–40. DOI: 10.1201/9780203911310.ch2.

9. Öztürk, T., Esen, B. (2008). Physical and mechanical properties of barley. Agricultura tropica et subtropica, 41. 117–121.

10. Tavakoli, M., Tavakoli, H., Rajabipour, A., Ahmadi, H., Gharib-Zahedi, S.M.T. (2009). Moisture-dependent physical properties of barley grains. International Journal of Agricultural and Biological Engineering. 84–91. DOI: 10.3965/j.issn.1934-6344.2009.04.084-091

11. Sologubik, C., Campañone, L., Pagano, A., Gely, M. (2013). Effect of moisture content on some physical properties of barley. Industrial Crops and Products. 762–767. DOI: 10.1016/j.indcrop.2012.08.019

12. Karaj, S., Müller, J. (2010). Determination of physical, mechanical and chemical properties of seeds and kernels of Jatropha Curcas L. Industrial Crops and Products. 129–138. DOI: 10.1016/j.indcrop.2010.04.001

13. Chursinov, Yu.O., Lutsenko, M.V., Kudryavtsev, I.M. (2022). Tekhniko-ekonomichne obgruntuvannya dotsilʹnosti sortuvannya vidkhodiv zernovykh ta oliynykh kulʹtur [Feasibility study of the feasibility of sorting grain and oilseed waste]. Science of Technology Innovation, 2(22). 61–67. DOI: 10.35668/2520-6524-2022-2-08 [in Ukrainian].

14. Aliiev, E.B., Babin, I.A., Sokol, S.P. (2023). Chyselʹne modelyuvannya protsesu aerodynamichnoyi separatsiyi dribnozernystoho sypkoho materialu [Numerical modeling of the process of aerodynamic separation of fine-grained bulk material]. Engineering, Energy, Transport of the Agricultural Complex. 1(120). 5–13. DOI: 10.37128/2520-6168-2023-1-1 [in Ukrainian].

15. Stepanenko, S.P., Kotov, B.I., Melnyk, V.A., Volyk, D.A. (2024). Modelyuvannya protsesu peremishchennya zernovoho materialu v robochiy zoni separatora [Modeling the process of grain material movement in the working zone of the separator]. Scientific Bulletin of the TSATU, 14 (1): 1–15. DOI: 10.32782/2220-8674-2024-24-1-3 [in Ukrainian].

16. Melnyk, V.A., Popadiuk, I.S., Volyk, D.A., Stepanenko, S.P. (2024). Doslidzhennya rozvytku tekhnolohiy ta tekhnichnykh zasobiv dlya pnevmovidtsentrovoho rozdilennya zernovykh materialiv [Research on the development of technologies and technical means for pneumatic centrifugal separation of grain materials]. Proceedings of the Tavria State Agrotechnological University named after Dmitry Motorny, 24(1): 75-88. DOI: 10.32782/2078-0877-2024-24-1-5 [in Ukrainian].

17. Naumenko, М., Sokol, S., Filipenko, D., Guridova, V., Kharytonov, M. (2018). Numeric model of the grain mixture flow in a cylindrical sieve which revolves around the inclined axis. INMATEH – Agricultural Engineering, 56(3). 67–74. [in English].

18. Kharchenko, S., Samborski, S., Paśnik, J., Kharchenko, F. (2025). The natural oscillations of perforated sifting surfaces with epicycloidal holes. Advances in Science and Technology Research Journal, 19(1): 256–268. DOI: 10.12913/22998624/195463 [in English].

19. Kharchenko, S., Samborski, S., Kharchenko, F., Korzec-Strzałka, I., Andrii, S. (2024). Dynamics of Loose Materials and Oscillations of Cylin-drical Perforated Sifting Surfaces with Volumetric Riffles. Advances in Science and Technology Research Journal, 18(8): 238–255. DOI: 10.12913/22998624/194114 [in English].

20. Aliiev, E., Gavrilchenko, A., Tesliuk, H., Tolstenko, A., Koshul’ko, V. (2019). Improvement of the sunflower seed separation process efficiency on the vibrating surface. Acta Periodica Technologica, APTEFF, 50. 12–22. DOI: 10.2298/APT1950012A [in English].

21. Bredykhin, V., Gurskyi, P., Alfyorov, O., Bredykhina, K., Pak, A. (2021). Improving the Mechanical-Mathematical Model of Grain Mass Separation in a Fluidized Bed. European Journal of Enterprise Technologies, 3(1 (111): 79–86. DOI: 10.15587/1729-4061.2021.232017 [in English].

22. Nykyforov, А., Antoshchenkov, R., Halych, I., Kis, V., Polyansky, P., Koshulko, V., Kilimnik, I. (2022). Construction of a regression model for assessing the efficiency of separation of light-weight seeds on vibratory machines involving measures to reduce the harmful influence of the aerodynamic factor. Eastern-European Journal of Enterprise Technologies. 2(1 (116)). 24–34. DOI: 10.15587/1729-4061.2022.253657 [in English].

23. Shevchenko I.A., Aliev E.B. (2018). Research on the photoelectronic separator seed supply block for oil crops. INMATEH – Agricultural Engineering, 54 (1): 129–138. [in English].

Citations

1. ДСТУ 2240-93. Насіння сільськогосподарських культур. Сортові та посівні якості. Технічні умови. Київ: Держстандарт України. 1993. 74 с.

2. Кириченко В.В. Основи управління продукційним процесом польових культур. Харків. 2016. 711 с.

3. Шевченко І.А., Лях В.О., Поляков О.І., Сорока А.І., Ведмедєва К.В., Журавель В.М., Махно Ю.О., Товстановська Т.Г., Буділка Г.І. Льон олійний, гірчиця. Стратегія виробництва олійної сировини в Україні (малопоширені культури). Інститут олійних культур Національної академії аграрних наук України. Запоріжжя: СТАТУС. 2017. 44 с.

4. Шевченко І.А., Поляков О.І., Ведмедєва К.В., Комарова І.Б. Рижій, сафлор, кунжут. Стратегія виробництва олійної сировини в Україні (малопоширені культури). Інститут олійних культур Національної академії аграрних наук України. Запоріжжія: СТАТУС. 2017. 40 с.

5. Brandenburg N. The principles and practice of seed cleaning: separation with equipment that senses dimension, shape, density, and terminal velocity of seeds. Seed science and technology. 1977. 5. Р. 173–186.

6. Jayas D., Cenkowski S. Grain property values and their measurement. Handbook of Industrial Drying. 2006. Р. 575–603. DOI: 10.1201/9781420017618.ch24

7. Riahi E., Ramaswamy H. Structure and composition of cereal grains and legumes. Handbook of Postharvest Technology. 2003. Р. 17–40. DOI: 10.1201/9780203911310.pt1

8. Sablani S.S., Ramaswamy H.S. Physicial and thermal properties of cereal grains. Handbook of Postharvest Technology. 2003. Р. 17–40. DOI: 10.1201/9780203911310.ch2

9. Öztürk T., Esen B. Physical and mechanical properties of barley. Agricultura tropica et subtropica. 2008. 41. Р. 117–121.

10. Tavakoli M., Tavakoli H., Rajabipour A., Ahmadi H., Gharib-Zahedi S.M.T. Moisture-dependent physical properties of barley grains. International Journal of Agricultural and Biological Engineering. 2009. Р. 84–91. DOI: 10.3965/j.issn.1934-6344.2009.04.084-091

11. Sologubik C., Campañone L., Pagano A., Gely M. Effect of moisture content on some physical properties of barley. Industrial Crops and Products. 2013. Р. 762–767. DOI: 10.1016/j.indcrop.2012.08.019.

12. Karaj S., Müller J. Determination of physical, mechanical and chemical properties of seeds and kernels of Jatropha Curcas L. Industrial Crops and Products. 2010. Р. 129–138. DOI: 10.1016/j.indcrop.2010.04.001

13. Чурсінов Ю.О., Луценко М.В., Кудрявцев І.М. Техніко-економічне обґрунтування доцільності сортування відходів зернових та олійних культур. Наука технології інновації. 2022. 2(22). С. 61–67. DOI: 10.35668/2520-6524-2022-2-08

14. Алієв Е.Б., Бабин І.А. Сокол С.П. Чисельне моделювання процесу аеродинамічної сепарації дрібнозернистого сипкого матеріалу. Техніка, енергетика, транспорт АПК. 2023. 1(120). С. 5–13. DOI: 10.37128/2520-6168-2023-1-1

15. Степаненко С.П., Котов Б.І., Мельник В.А., Волик Д.А. Моделювання процесу переміщення зернового матеріалу в робочій зоні сепаратора. Науковий вісник ТДАТУ. 2024. 14 (1). С. 1–15. DOI: 10.32782/2220-8674-2024-24-1-3

16. Мельник В.А., Попадюк І.С., Волик Д.А., Степаненко С.П. Дослідження розвитку технологій та технічних засобів для пневмовідцентрового розділення зернових матеріалів. Праці Таврійського державного агротехнологічного університету імені Дмитра Моторного. 2024. 24(1). С. 75-88. DOI: 10.32782/2078-0877-2024-24-1-5

17. Naumenko М., Sokol S., Filipenko D., Guridova V., Kharytonov M. Numeric model of the grain mixture flow in a cylindrical sieve which revolves around the inclined axis. INMATEH – Agricultural Engineering. 2018. 56(3). Р. 67–74.

18. Kharchenko S., Samborski S., Paśnik J., Kharchenko F. The natural oscillations of perforated sifting surfaces with epicycloidal holes. Advances in Science and Technology Research Journal. 2025. 19(1). 256–268. DOI: 10.12913/22998624/195463

19. Kharchenko S., Samborski S., Kharchenko F., Korzec-Strzałka I., Andrii S. Dynamics of Loose Materials and Oscillations of Cylin-drical Perforated Sifting Surfaces with Volumetric Riffles. Advances in Science and Technology Research Journal. 2024. 18(8), Р. 238–255. DOI: 10.12913/22998624/194114

20. Aliiev E., Gavrilchenko A., Tesliuk H., Tolstenko A., Koshul’ko V. Improvement of the sunflower seed separation process efficiency on the vibrating surface. Acta Periodica Technologica, APTEFF. 2019. 50. Р. 12–22. DOI: 10.2298/APT1950012A

21. Bredykhin V., Gurskyi P., Alfyorov O., Bredykhina K., Pak A. Improving the Mechanical-Mathematical Model of Grain Mass Separation in a Fluidized Bed. European Journal of Enterprise Technologies. 2021. 3(1 (111).Р. 79–86. DOI: 10.15587/1729-4061.2021.232017

22. Nykyforov А., Antoshchenkov R., Halych I., Kis V., Polyansky P., Koshulko V., Kilimnik I. Construction of a regression model for assessing the efficiency of separation of light-weight seeds on vibratory machines involving measures to reduce the harmful influence of the aerodynamic factor. Eastern-European Journal of Enterprise Technologies. 2022. 2(1 (116)).Р. 24–34. DOI: 10.15587/1729-4061.2022.253657

23. Shevchenko I.A., Aliev E.B. Research on the photoelectronic separator seed supply block for oil crops. INMATEH – Agricultural Engineering. 2018. 54 (1). Р. 129–138.

Copyright (c) 2024 Elchyn Aliiev, Olha Aliieva, Volodymyr Govorukha, Oleksandr Kobets