DOI: https://doi.org/10.32515/2664-262X.2024.10(41).1.143-154

Synthesis of Storage and Loading Hoppers with Elements of Automation

Ivan Нevko, Andrii Diachun, Roman Rohatynskyi, Taras Dovbush, Volodymyr Buchynskyi

About the Authors

Ivan Нevk, Professor, Doctor in Technics (Doctor of Technic Sciences), Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, e-mail: gevkoivan1@ukr.net, ORCID ID: 0000-0001-5170-0857

Andrii Diachun, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, e-mail: dyachun_andriy@ukr.net, ORCID ID: 0000-0003-1354-9468

Roman Rohatynskyi, Professor, Doctor in Technics (Doctor of Technic Sciences), Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, e-mail: rogatynskyi@gmail.com, ORCID ID: 0000-0001-8536-4599

Taras Dovbush, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, e-mail: tarasdowbush@gmail.com, ORCID ID: 0000-0002-8354-7276

Volodymyr Buchynskyi, post-graduate, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

Abstract

The purpose of the article is to generate effective designs of storage and loading hopper systems with automation elements based on the application of structural-schematic synthesis by the method of hierarchical grouping using morphological analysis. The use of this method of carrying out structural-schematic synthesis makes it possible to obtain a limited number of design solutions for hoppers, taking into account the gradation of requirements that are applied to them in the process of their development. It allows to significantly save time and resources spent on the search for more effective alternatives. The generation of efficient designs of storage-loading hopper systems with automation elements was carried out based on the application of structural-schematic synthesis by the method of hierarchical grouping with the help of morphological analysis. As a result of the conducted synthesis, 57 variants of design solutions of storage and loading hoppers were obtained, the schemes of six of them are shown in the figures. Their advantages are the ability to change the volume of accumulation, the possibility of disturbing the bulk medium and avoiding its jamming, ensuring the forced intensive supply of materials when unloading from hoppers, the ability to loosen bulk materials and ensure uniform loading of the conveyor. A scheme of an automated adaptive limit control system for a screw conveyor with a storage-loading hopper has been developed, which provides a constant value of the given production parameters, in particular, the productivity of bulk materials transportation, the power of the screw drive under the influence of various external factors. By changing the number and composition of the elements of this system, it is possible to generate various design schemes of storage and loading hoppers with automation elements.

Keywords

structural-schematic synthesis, accumulation, loading, hopper, element, screw conveyor, automation

Full Text:

PDF

References

1. Banha V.I. & Krupych O.M. (2019). Methodology of experimental studies of the feed mass meter in the dispenser hopper. Prospective technologies and devices, Lutsk, 14, 31-37 [in Ukrainian].

2. Nychehlod V.V., Burmistenkov O.P. & Statsenko V.V. (2022). Study of the influence of the shape of the hopper on the nature of the flow of powdery loose materials. Technologies and engineering, 6 (11), 42-51 [in Ukrainian].

3. Statsenko V.V., Burmistenkov O.P. & Bila T.Ia. (2018). Study of the nature of the flow of loose materials in hopper devices by the discrete elements method. Bulletin of the Khmelnytskyi National University, 6 (267), 1, 7-14 [in Ukrainian].

4. Kondic L. (2014). Simulations of two dimensional hopper flow. Granular Matter, 16, 235–242.

5. López-Rodríguez D., Gella D., To K., Maza D., Garcimartín A. & Zuriguel I. (2019). Effect of hopper angle on granular clogging. Physical review, E 99, 032901.

6. Liu S.D., Zhou Z.Y., Zou R.P., Pinson D. & Yu A.B. (2014). Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technology, 253, P. 70–79.

7. Rubio-Largo S.M., Janda A., Maza D., Zuriguel I. & Hidalgo R.C. (2015). Disentangling the free-fall arch paradox in silo discharge. Physical review letters, 114, 238002.

8. Fullard L.A., Breard E.C.P., Davies C.E., Godfrey A.J.R., Fukuoka M., Wade A., Dufek J. & Lube G. (2019). The dynamics of granular flow from a silo with two symmetric openings. Proc. R. Soc, A 475, 20180462.

9. Gella D., Maza D. & Zuriguel I. (2017). Role of particle size in the kinematic properties of silo flow. Physical review, E 95, 052904.

10. Hevko I.B., Diachun A.Ie., Melnychuk A.L., Varian A.R. & Kondratiuk O.M. (2016). Bench equipment for the study of modernized screw conveyors. Bulletin of the National University of Water Management and Nature Management, Rivne, 3 (75), 274-282 [in Ukrainian].

11. Rohatynskyi R.M., Hevko I.B., Diachun A.Ie. & Varian A.R. (2016). Synthesis of screw transport and technological mechanisms with transport casings. Bulletin of the Petro Vasylenko Kharkiv National Technical University of Agriculture, Kharkiv, 168, 149-155 [in Ukrainian].

12. Rohatynskyi R.M., Hevko I.B., Diachun A.Ie., Varian A.R., Melnychuk A.L. & Shust I.M. (2017). Generation of structures of screw mechanisms by the method of morphological analysis with hierarchical grouping. Prospective technologies and devices, Lutsk, 10, 186 192 [in Ukrainian].

Citations

1. Банга В.І., Крупич О.М. Методика експериментальних досліджень вимірювача маси комбікорму в бункері дозатора. Перспективні технології та прилади. Луцьк, 2019. Вип. №14. С. 31-37.

2. Ничеглод В.В., Бурмістенков О.П., Стаценко В.В. Дослідження впливу форми бункера на характер протікання порошкових сипких матеріалів. Технології та інжиніринг. 2022. № 6 (11). С. 42-51.

3. Стаценко В.В., Бурмістенков О.П., Біла Т.Я. Дослідження характеру плину сипких матеріалів в бункерних пристроях методом дискретних елементів. Вісник Хмельницького національного університету. 2018. №6 (267). Т. 1. С. 7-14.

4. Kondic L. Simulations of two dimensional hopper flow. Granular Matter. 2014. 16. P. 235–242.

5. López-Rodríguez D., Gella D., To K., Maza D., Garcimartín A., Zuriguel I. Effect of hopper angle on granular clogging. Physical review. 2019. E 99. 032901.

6. Liu S.D., Zhou Z.Y., Zou R.P., Pinson D., Yu A.B. Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technology. 2014. 253. P. 70–79.

7. Rubio-Largo S.M., Janda A., Maza D., Zuriguel I., Hidalgo R.C. Disentangling the free-fall arch paradox in silo discharge. Physical review letters. 2015. 114. 238002.

8. Fullard L.A., Breard E.C.P., Davies C.E., Godfrey A.J.R., Fukuoka M., Wade A., Dufek J., Lube G. The dynamics of granular flow from a silo with two symmetric openings. Proc. R. Soc. 2019. A 475. 20180462.

9. Gella D., Maza D., Zuriguel I. Role of particle size in the kinematic properties of silo flow. Physical review. 2017. E 95. 052904.

10. Гевко І.Б., Дячун А.Є., Мельничук А.Л., Вар’ян А.Р., Кондратюк О.М. Стендове обладнання для дослідження модернізованих гвинтових конвеєрів. Вісник Національного університету водного господарства та природокористування. Рівне, 2016. Вип. 3 (75). С. 274-282.

11. Рогатинський Р.М., Гевко І.Б., Дячун А.Є., Вар’ян А.Р. Синтез гвинтових транспортно-технологічних механізмів з транспортуючими кожухами. Вісник Харківського національного технічного університету сільського господарства імені Петра Василенка. Харків, 2016. Вип. 168. С. 149-155.

12. Рогатинський Р.М., Гевко І.Б., Дячун А.Є., Вар’ян А.Р., Мельничук А.Л., Шуст І.М. Генерування конструкцій гвинтових механізмів методом морфологічного аналізу з ієрархічним групуванням. Перспективні технології та прилади. Луцьк, 2017. Вип. 10. С. 186 192.

Copyright (c) 2024 Ivan Нevko, Andrii Diachun, Roman Rohatynskyi, Taras Dovbush, Volodymyr Buchynskyi