DOI: https://doi.org/10.32515/2664-262X.2024.10(41).1.179-185

Mathematical Modeling of Soil Behavior in the Process of Puncture

Serhiy Khachaturyan, Serhiy Kovalevskyi, Olena Khachaturyan

About the Authors

Serhiy Khachaturyan, Associate Professor, PhD in Technics (Candidate of Technics Sciences), CentralUkrainianNationalTechnicalUniversity, Kropyvnytskyi, Ukraine,, e-mail: serg5407@gmail.com, ORCID ID: 0000-0002-3562-1267

Serhiy Kovalevskyi, Professor, PhD in Technics (Candidate of Technics Sciences), National Automobile and Highway University, Kharkiv, Ukraine, e-mail: 2407180@ukr.net, ORCID ID: 0000-0002-6299-2223

Olena Khachaturyan, PhD in Economics (Candidate of Economics Sciences), FlightAcademyoftheNationalAviationUniversity, Kropyvnytskyi, Ukraine, e-mail: elenarice1210@gmail.com, ORCID ID: 0000-0002-2893-6914

Abstract

Modern construction involves the laying of a large number of various engineering communications.It is often necessary to arrange crossings under highways, railway tracks and other ground structures, the destruction of which during open trench development is a very expensive procedure. Recently, the technology of trenchless laying of engineering communications has become widespread.The simplest and quite effective is currently the most common method of static puncture. This method of well formation is characterized by the occurrence of significant stresses in the soil around the working body, which can have a destructive effect on engineering objects located nearby, both in the soil and on the surface. There is an urgent need to study soil behavior during puncture, in particular, using mathematical modeling of the process. The paper describes an approach to mathematical modeling of soil behavior in the process of puncture as a flow of a rigid-plastic medium. The movement of the medium is considered in Euler coordinates. The working body is modeled by a completely solid cone. The main assumptions are stated and substantiated. Pressure was considered instead of average stress. The density of the deforming medium was assumed to be constant.Under pressure was understood excess pressure, i.e. pressure caused by the action of the effort of the working body during a puncture.It was believed that soil resistance is determined mainly by the resistance of a relatively narrow layer adjacent to the working body.Instead of Cartesian coordinates, spherical coordinates were used in this case.As a result, all the dependencies characterizing the rigid-plastic flow are analytically deduced ‒ the fields of velocities, deformation velocities and stresses.

Keywords

loader, articulated frame, hydraulic drive, steering, dredging, research, mathematical modeling

Full Text:

PDF

References

1. Mohammad Najafi (2010) Trenchless technology piping. Installation and inspection / ASCE-press, WEF Press Water Environment Federation Alexandria, Virginia, 482 р. [in English].

2. Hastak, M., Gokhale, S. (2009) Decision Tool for Selecting the Most Appropriate Technology for Underground Conduit Construction. Geological Engineering: Proceedings of the 1st International Conference. New York. DOI: 10.1115/1.802922.paper30 [in English].

3. Khachaturian, S.L. (2016). Utvorennya sverdlovyn prystroyem statychnoyi diyi z konichnym robochym orhanom [The formation of wells by a device of static action with a conical working body]. Nauka ta innovatsiyi. Materialy ХХХІV Mizhnarodnoyi naukovo-praktychnoyi konferentsiyi «Suchasna problematyka naukovykh doslidzhenʹ» ‒ Materials of the XXXIV International Scientific and Practical Conference "Modern Problems of Scientific Research". Chernivtsi, 15-16 lyutoho 2016 r. Kyyiv: Naukovo-vydavnychyy tsentr «Laboratoriya dumky». P. 4-6 [in Ukrainian].

4. Suponyev V.M., Rahulin V.M., Kravetsʹ S.V. (2023). Vyznachennya maksymalʹno dopustymoho diametra sverdlovyny za umovy zadanoyi hlybyny prokhodky metodom statychnoho prokolyuvannya gruntu [Determination of the maximum permissible diameter of the well under the condition of the specified penetration depth by the method of static piercing of the soil]. Visnyk Kharkivsʹkoho natsionalʹnoho avtomobilʹno-dorozhnʹoho universytetu ‒ Bulletin of the Kharkiv National Automobile and Road University. №101, Volume 2. P. 59-66 [in Ukrainian].

5. Suponev V.N., Oleksin V.I., Khachaturyan S.L. (2016). Issledovaniye protsessa izmeneniya sostoyaniya grunta vokrug gorizontal'noy skvazhiny pri yeye razrabotke metodom staticheskogo prokola [Study of the process of changing the state of the soil around a horizontal well during its development using the static puncture method]. Visnyk Kharkivsʹkoho natsionalʹnoho avtomobilʹno-dorozhnʹoho universytetu ‒ Bulletin of the Kharkiv National Automobile and Road University. №73. P. 202-205 [in Ukrainian].

6. Posmituha, A., Kravets, S., Suponyev, V., & Kulazhenko, Y. (2018). Determination of the size of the seal zone and the pressure of the soil on underground communications in the process of deformation of the soil by the wedge tip. Industrial and Technology Systems. Published online: (№1(43)). P. 11-16. URL: http://journals.uran.ua/tarp/article/view/146626/146478 [in English].

7. Kalyuzhnyy O.V. (2012). Analiz inzhenernym metodom protsesu obtysku z dyferentsiyovanym protytyskom v konichniy matrytsi [Analysis by the engineering method of the crimping process with differentiated back pressure in a conical matrix]. Obrobka materyaliv tyskom ‒ Processing of materials by pressure. №2(31). P. 15-21 [in Ukrainian].

8. Mises R. (1928). Mechanik der plastischen Formänderungen von Kristallen. Zeitschrift für angew.// Mat. and Mech. B.8. H.3. P. 161 – 185 [in English].

9. Chernyy G.I. (1979). Izmeneniya fiziko-mekhanicheskikh svoystv gruntov pri dinamicheskikh nagruzkakh [Changes in the physical and mechanical properties of soils under dynamic loads]. Kyiv: Nauk. Dumka. 132 p. [in Ukrainian].

10. Vaysfelʹd N.D., Fesenko H.O. (2019). Mishani zadachi teoriyi pruzhnosti dlya pivneskinchennoho sharu [Mixed problems of the theory of elasticity for a semi-infinite layer]: monohrafiya. Odesa : Astroprynt. 120 p. [in Ukrainian].

Citations

1. Najafi M. Trenchless technology piping. Installation and inspection / ASCEpress, WEF Press Water Environment Federation Alexandria, Virginia, 2010. 482 р.

2. Hastak M., Gokhale S., Decision Tool for Selecting the Most Appropriate Technology for Underground Conduit Construction. Geological Engineering: Proceedings of the 1st International Conference. New York, 2009. DOI: 10.1115/1.802922.paper30.

3. Хачатурян С.Л. Утворення свердловин пристроєм статичної дії з конічним робочим органом. Наука та інновації: Матеріали ХХХІV Міжнародної науково-практичної конференції «Сучасна проблематика наукових досліджень», Чернівці, 15-16 лютого 2016 р. Київ: Науково-видавничий центр «Лабораторія думки», 2016. С. 4-6.

4. Супонєв В.М., Рагулін В.М., Кравець С.В. Визначення максимально допустимого діаметра свердловини за умови заданої глибини проходки методом статичного проколювання ґрунту. Вісник Харківського національного автомобільно-дорожнього університету. 2023. Вип. 101, т. 2. С. 59-66.

5. Супонев В.Н., Олексин В.И., Хачатурян С.Л. Исследование процесса изменения состояния грунта вокруг горизонтальной скважины при ее разработке методом статического прокола Вісник Харківського національного автомобільно-дорожнього університету. 2016. Вип. 73. С. 202-205. Режим доступу: http://nbuv.gov.ua/UJRN/vhad_2016_73_40.

6. Posmituha, A., Kravets, S., Suponyev, V., & Kulazhenko, Y. Determination of the size of the seal zone and the pressure of the soil on underground communications in the process of deformation of the soil by the wedge tip. Industrial and Technology Systems. Published online: (2018, №1(43)). P 11-16. URL: http://journals.uran.ua/tarp/article/view/146626/146478.

7. Калюжний О.В. Аналіз інженерним методом процесу обтиску з диференційованим протитиском в конічній матриці / О.В. Калюжний // Обробка материалів тиском. 2012. №2(31). С. 15-21.

8. Mises R. Mechanik der plastischen Formänderungen von Kristallen. Zeitschrift für angew.// Mat. and Mech. 1928. B.8. H.3. P. 161 – 185.

9. Черный Г.И. Изменения физико-механических свойств грунтов при динамических нагрузках. Киев: Наук. думка, 1979. 132 с.

10. Вайсфельд Н.Д., Фесенко Г.О. Мішані задачі теорії пружності для півнескінченного шару : монографія / Н.Д. Вайсфельд, Г.О. Фесенко. Одеса : Астропринт, 2019. 120 с.

Copyright (c) 2024 Serhiy Khachaturyan, Serhiy Kovalevskyi, Olena Khachaturyan