DOI: https://doi.org/10.32515/2664-262X.2024.10(41).1.80-91

Design of Restrained Roof Purlins, Taking Into Account the Stiffness of the Profiled deck

Serhii Hudz, Oleksii Fenko, Viktor Dariienko, Hennadii Portnov

About the Authors

Serhii Hudz, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Pryazovskyi State Technical University, Dnipro, Ukraine, e-mail: goods_s_a@pstu.edu, ORCID ID: 0000-0002-4764-8635

Oleksii Fenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine, e-mail: fenko.aleksey@gmail.com, ORCID ID: 0000-0002-5654-5849

Viktor Dariienko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: vvdarienko@gmail.com, ORCID ID: 0000-0001-9023-6030

Hennadii Portnov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: budkom999@gmail.com, ORCID ID: 0000-0001-8040-6761

Abstract

The purpose of the study is to analyse internal forces and deformations in the roof purlins restrained by profiled decking, taking into account as many factors as possible that have a significant impact on the cross-sectional utilisation factor in terms of normal stresses, which is an important factor in efficiency and material consumption. The following assumption was confirmed in this research paper. If a profiled flooring is rigidly attached to the upper flange of a steel purlin in light-roofed frame buildings using self-tapping screws and is interconnected by rivets at the longitudinal joints, it can effectively prevent torsion and lateral bending and be used to counteract the lateral-torsional buckling of the beam. The peculiarities of checking the stability of continuous purlins as part of a roof were investigated and the effectiveness of open cross-sections of hot-rolled profiles was compared on this basis. Practical recommendations for reducing the material consumption of purlin systems by rationally selecting the type of cross-section are given. The conclusion is made on the basis of a geometrically nonlinear analysis of the stress-strain state in accordance with the full theory of beams, taking into account imperfections and stiffness of lateral bracing structures. Preference is given to purlins made of rolled I-beams, which, due to their symmetry, have smaller eccentricities of load application and internal forces by restraint, unlike channels. The analysis of the stress-strain state based on the full theory of beams and the spatial deformation model, which are in good agreement with each other, allows us to confirm the assumption that when roof purlins are restrained by profiled decking, they can be simplified in the elastic stage only for the main load in the plane of greater stiffness without the use of weights. The pitched component of the load at typical roof pitches of no more than 15º will be largely absorbed by the sheathing itself, and its value is insignificant and can be neglected in comparison with the effect of the prevailing load component in the main bending plane.

Keywords

purlin, open cross-section, buckling, torsion, restraint

Full Text:

PDF

References

1. Balázs I., Melcher J. (2017) Influence of Uplift Load on Torsional Restraint Provided to Steel Thin-Walled Purlins by Sandwich Panels. Procedia Engineering. Vol. 190. P. 35–42. [in English]. DOI: https://doi.org/10.1016/j.proeng.2017.05.304

2. Gajdzicki M., Goczek J. (2017) Influence of sheet-to-purlin fastener properties on the rotational restraint of cold-formed Z-purlins. International Journal of Steel Structures. Vol. 17, no. 2. P. 711–721. [in English]. DOI: https://doi.org/10.1007/s13296-017-6025-5

3. Ren C., Zhao X., Chen Y. (2016)Buckling behaviour of partially restrained cold-formed steel zed purlins subjected to transverse distributed uplift loading. Engineering Structures. Vol. 114. P. 14–24. [in English]. DOI: https://doi.org/10.1016/j.engstruct.2016.01.048

4. Gosowski B., Kubica E., Rykaluk K. Analysis of laterally restrained cold-formed C-shape purlins according to Vlasov theory. Archives of Civil and Mechanical Engineering. 2015. Vol. 15, no. 2. P. 456–468. [in English]. DOI: https://doi.org/10.1016/j.acme.2014.06.001

5. GBT-based assessment of the buckling behaviour of cold-formed steel purlins restrained by sheeting / C. Basaglia et al. Thin-Walled Structures. 2013. Vol. 72. P. 217–229. [in English]. DOI: https://doi.org/10.1016/j.tws.2013.06.005

6. Cucu V., Constantin D., Buliga D.-I. Structural Efficiency Of Cold-Formed Steel Purlins. International conference KNOWLEDGE-BASED ORGANIZATION. 2015. Vol. 21, no. 3. P. 809–814. [in English]. DOI: https://doi.org/10.1515/kbo-2015-0137

7. Hudz S.A. Rozvynena modelʹ rozrakhunku stalevykh rozkriplenykh elementiv na stiykistʹ pry sumisniy diyi poperechnoho z·hynu ta kruchennya [A developed model for calculating the stability of unfastened steel elements under the combined action of transverse bending and torsion] / S.A. Hudz, H.M. Gasii, V.V. Dariyenko // Suchasni budivelʹni konstruktsiyi z metalu ta derevyny: Zbirnyk naukovykh pratsʹ [Modern structures of metal and wood: Collection of scientific papers]. – Odesa: ODABA, 2020. Issue. 24. P. 43 – 52. [in Ukrainian]. DOI: https://doi.org/10.31650/2707-3068-2020-24-43-52

8. Hudz Serhii. Plastic bearing capacity of the steel element cross-section by internal forces combination and restraint / Hudz Serhii, Gasii Grygorii, Нasenko Anton, Dariienko Viktor // Зб. наук. праць. Серія: галузеве машинобудування, будівництво [Collection of scientific work. Series: industrial engineering, construction]. Vol. 2 (53). Poltava: PoltNTU, 2019. P. 73 – 78. [in English]. DOI: https://doi.org/10.26906/znp.2019.53.1893

9. EN 1993-1-3:2006. Eurocode 3: Design of steel structures. Part 1-3: General rules. Supplementary rules for cold-formed members and sheeting. Brussels: CEN, 2006. 130 p. [in English]. https://www.stahlbau.ruhr-uni-bochum.de/sb/service/rubsteeltools.html.en

10. DBN V.2.6-198:2014. Konstruktsiyi budivelʹ i sporud. Stalevi konstruktsiyi. Normy proektuvannya / Ostatochna redaktsiya. Vydannya ofitsiyne. [Structures of buildings and structures. Steel structures. Design standards / Final version. The publication is official]. Entered into force on January 1, 2015. K.: Ministry of Regional Construction of Ukraine, 2014. 199 p. [in Ukrainian].

Citations

1. Balázs I., Melcher J. Influence of Uplift Load on Torsional Restraint Provided to Steel Thin-Walled Purlins by Sandwich Panels. Procedia Engineering. 2017. Vol. 190. P. 35–42. DOI: https://doi.org/10.1016/j.proeng.2017.05.304

2. Gajdzicki M., Goczek J. Influence of sheet-to-purlin fastener properties on the rotational restraint of cold-formed Z-purlins. International Journal of Steel Structures. 2017. Vol. 17, no. 2. P. 711–721. DOI: https://doi.org/10.1007/s13296-017-6025-5

3. Ren C., Zhao X., Chen Y. Buckling behaviour of partially restrained cold-formed steel zed purlins subjected to transverse distributed uplift loading. Engineering Structures. 2016. Vol. 114. P. 14–24. DOI: https://doi.org/10.1016/j.engstruct.2016.01.048

4. Gosowski B., Kubica E., Rykaluk K. Analysis of laterally restrained cold-formed C-shape purlins according to Vlasov theory. Archives of Civil and Mechanical Engineering. 2015. Vol. 15, no. 2. P. 456–468. DOI: https://doi.org/10.1016/j.acme.2014.06.001

5. GBT-based assessment of the buckling behaviour of cold-formed steel purlins restrained by sheeting / C. Basaglia et al. Thin-Walled Structures. 2013. Vol. 72. P. 217–229. DOI: https://doi.org/10.1016/j.tws.2013.06.005

6. Cucu V., Constantin D., Buliga D.-I. Structural Efficiency Of Cold-Formed Steel Purlins. International conference KNOWLEDGE-BASED ORGANIZATION. 2015. Vol. 21, no. 3. P. 809–814. DOI: https://doi.org/10.1515/kbo-2015-0137

7. Гудзь С.А. Розвинена модель розрахунку сталевих розкріплених елементів на стійкість при сумісній дії поперечного згину та кручення / С.А. Гудзь, Г.М. Гасій, В.В. Дарієнко // Сучасні будівельні конструкції з металу та деревини: Збірник наукових праць. Одеса: ОДАБА, 2020. вип. 24. С. 43 – 52. DOI: https://doi.org/10.31650/2707-3068-2020-24-43-52

8. Hudz Serhii. Plastic bearing capacity of the steel element cross-section by internal forces combination and restraint / Hudz Serhii, Gasii Grygorii, Нasenko Anton, Dariienko Viktor // Зб. наук. праць. Серія: галузеве машинобудування, будівництво. Вип. 2 (53). Полтава: ПолтНТУ, 2019. С. 73 – 78. DOI: https://doi.org/10.26906/znp.2019.53.1893

9. EN 1993-1-3:2006. Eurocode 3: Design of steel structures. Part 1-3: General rules. Supplementary rules for cold-formed members and sheeting. Brussels: CEN, 2006. 130 p. https://www.stahlbau.ruhr-uni-bochum.de/sb/service/rubsteeltools.html.en

10. ДБН В.2.6-198:2014. Конструкції будівель і споруд. Сталеві конструкції. Норми проектування / Остаточна редакція. Видання офіційне. Надано чинності з 1 січня 2015 р. К.: Мінрегіонбуд України, 2014. 199 с.

Copyright (c) 2024 Serhii Hudz, Oleksii Fenko, Viktor Dariienko, Hennadii Portnov