DOI: https://doi.org/10.32515/2664-262X.2024.10(41).1.250-260

Mechanisms of Internal and External Friction and their Influence on Wear Processes of Tribo-coupling of Machine Parts

Viktor Aulin, Oleksandr Kuzyk, Andrii Tykhyi, Serhii Lysenko, Inna Zhylova

About the Authors

Viktor Aulin, Professor, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: AulinVV@gmail.com, ORCID ID: 0000-0003-2737-120X

Oleksandr Kuzyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kuzykov1985@gmail.com, ORCID ID: 0000-0002-3047-3760

Andrii Tykhyi, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: a.a.tihiy@gmail.com, ORCID ID: 0000-0001-5323-4415

Serhii Lysenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: sv07091976@gmail.com, ORCID ID: 0000-0003-0845-7817

Inna Zhylova, Graduate student, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: inna-y81@ukr.net, ORCID ID: 0000-0003-0834-3713

Abstract

The article describes the essence and mechanisms of internal and external friction, their characteristics. A generalized characteristic of external friction is the selective uneven wear of the loaded working surfaces of parts. Dynamic mechanisms of stress relaxation of the surface layers of materials of tribocoupler parts are a mechanism of energy dissipation in the process of internal friction. It is noted that the typical processes of mechanical relaxation in samples of relaxation internal friction are Snoek relaxation, Kester relaxation, and grain boundary relaxation. Their specifics are considered. The process of dynamic strain hardening and its influence on wear processes are considered. It is indicated that for the development of the specified strengthening of the samples, it is necessary to create plastic deformations of free dislocations in the materials of the parts, the presence of impurity atoms in the solid solution of the material of the triboconjugation parts, and the provision of dynamic interaction between generating dislocations and impurity atoms in the materials of the parts. It is shown that hardness, the limit of strength, fatigue and endurance increases. The results of laboratory studies of hardened and highly tempered samples of parts made of steels 25 and 45 on the installation for measuring the temperature and amplitude dependences of internal friction and on the friction machine 2070СМТ-1 are given. The rationale for heat treatment regimes and changes in wear patterns and friction coefficient is given. It is shown that the realization of the internal friction parameter is accompanied by transfer processes. It was found that relaxation processes in case of insufficient dissipative properties of the fine structure of the material contribute to the increase of wear resistance.

Keywords

internal and external friction, wear, energy dissipation, mechanical relaxation, wear resistance, deformation, dislocations

Full Text:

PDF

References

1. Aulin V.V. (2009). Pidvyshchennia nadiinosti trybosystem realizatsiieiu protsesiv samoorhanizatsii [Increasing the reliability of tribosystems by implementing self-organization processes]. Materialy III mizhnar. nauk.-tekhn. konf.: "Suchasni problemy trybotekhniky - Modern problems of tribotechnics", 7-9 zhovtnia 2009r. Mykolaiv: NUK, S 15-17 [in Ukrainian].

2. Stachowiak, G. Peter J. Blau (2017): Tribosystem Analysis: A Practical Approach to the Diagnosis of Wear Problems. Tribol Lett 65, 136. [in English].

3. Blau, P.J. (2009) Friction Science and Technology: From Concepts to Applications. CRC Press, Boca Raton, 43-118. [in English].

4. Mikhail S. Blanter, Igor S. Golovin, Hartmut Neuhäuser, Hans-Rainer Sinning Internal Friction in Metallic Materials. Springer Berlin, Heidelberg. 12 June 2007. [in English].

5. Clogston A.M.. Relaxation phenomena in ferrites. The Bell System Technical Journal. Volume: 34, Issue: 4, July 1955. [in English].

6. Morris J.G. Dynamic strain aging in aluminum alloys. Materials Science and Engineering. Volume 13, Issue 2, February 1974, Pages 101-108.Materials Testing Laboratory. URL: https://kois.prz.edu.pl/en/laboratories/materials-testing-laboratory (date of application : 01.08.2024) [in English].

7. Aulin V.V., Holovatyi A.O., Mirnyi V.Iu., Kuzyk O.V. (2014). Rozrobka tekhnolohii zmitsnennia detalei silskohospodarskoi tekhniky z urakhuvanniam zovnishnoho ta vnutrishnoho tertia v materialakh [Development of technologies for strengthening parts of agricultural machinery taking into account external and internal friction in materials]. Zbirnyk tez I Vseukrainskoi naukovo-praktychnoi konferentsii studentiv ta molodykh naukovtsiv "Perspektyvy ta tendentsii rozvytku konstruktsii silskohospodarskykh mashyn ta znariad - Prospects and trends in the development of constructions of agricultural machines and tools". 16-17 zhovtnia 2014 r. Zhytomyr: Zhytomyrskyi ahrotekhnichnyi koledzh, S. 52-54 [in Ukrainian].

8. Aulin V.V. (2014). Fizychni osnovy protsesiv i staniv samoorhanizatsii v trybotekhnichnykh systemakh: Monohrafiia [Physical basis of processes and states of self-organization in tribotechnical systems: Monograph]. Kirovohrad: KOD, 370 s [in Ukrainian].

9. Shevelya V.V., Oleksandrenko V.P. (2006). Tribokhimiya i reologiya iznosostoikosti [Tribochemistry and rheology of wear resistance]. Khmelnitskii: KhNU. 278 s [in Russian].

10. Baker L.J., Parker J.D., Daniel S.R. (2003). The use of internal friction techniques as a quality control tool in the mild steel industry. Journal of Materials Processing Technology. Vol. 143-144. p. 442-447 [in English].

11. Hoyos J.J., Ghilarducci A.A., Salva H.R., Chaves C.A., Vélez J.M. (2011). Effects of tempering on internal friction of carbon steels. Materials Science and Engineering: Properties, Microstructure and Processing. Vol. 528, Issue 9. p. 3385-3389 [in English].

12. Leisure R.G., Foster K., Hightower J.E., Agosta D.S. (2004). Internal friction studies by resonant ultrasound spectroscopy. Materials Science and Engineering: A. Proceedings of the 13th International Conference of Internal Friction and Mechanical Spectroscopy. Vol. 370, Issues 1-2. p. 34-40 [in English].

13. Li S., Deng L., Wu X., Wang H., Min Y. (2010). Low-frequency internal friction investigating of the carbide precipitation in solid solution during tempering in high alloyed martensitic steel. Materials Science and Engineering: A. 2010. Vol. 527, Issue 26. p. 6899-6903 [in English].

14. Lu X., Jin M., Zhao H., Li W., Jin X. (2014). Origin of low-temperature shoulder internal friction peak of Snoek-Kester peak in a medium carbon high alloyed steel. Solid State Communications. Vol. 195. p. 31-34.

15. Shevelya V., Sokolan J., Kupiec B., Korenivskiy M. (2014). Effect of Viscoelastic Properties of Treated Steel on the Rheology and Dissipative Properties of Frictional Contact. Archives of Foundry Engineering. Vol. 14, Special Issue 1. p. 193-198 [in English].

16. Shevelya V. V., Sokolan Yu. S. (2015). Dynamic relaxation processes in steel friction under the action of heat treatment. Strength of Materials. 2015. Vol. 47, No. 4. p. 524-53[in English].

17. Tkalcec J., Mari D. (2011). Internal friction in martensitic, ferritic and bainitic carbon steel; cold work effects. Materials Science and Engineering: A. Vol. 370, Issues 1-2. p. 213-217 [in English].

18. Tkalcec J., Mari D., Benoit W. (2006). Correlation between internal friction background and the concentration of carbon in solid solution in a martensitic steel. Materials Science and Engineering: A. Proceedings of the 14th International Conference of Internal Friction and Mechanical Spectroscopy. Vol. 442, Issues 1-2. p. 471-475[in English].

19. Zheng S., Urueña J. M., Dunn A. C., Uhl J. T., and Dahmen K. A. (2020). Similarity of internal and external friction: Soft matter frictional instabilities obey mean field dissipation through slip avalanches. Phys. Rev. Research 2, 042016(R) [in English].

20. The basic principles and applications of internal friction and mechanical spectroscopy [J]. PHYSICS, 2011, 40(12): 786-793 [in English].

21. Wert C. A. (1986). Internal friction in solids. J. Appl. Phys. 60, 1888-1895 [in English].

22. Nian Yin, Zhiguo Xing, Ke He, Zhinan Zhang. (2020). Tribo-informatics approaches in tribology research: A review, Friction, 1, p. 1-22 [in English].

23. Nian Yin and Zhinan Zhang (2024). Tribo-Informatics: The Systematic Fusion of AI and tribology. CRC Press. 220 [in English].

Citations

1. Аулін В.В. Підвищення надійності трибосистем реалізацією процесів самоорганізації. Матеріали ІІІ міжнар. наук.-техн. конф.: "Сучасні проблеми триботехніки", 7-9 жовтня 2009р. Миколаїв: НУК, С 15-17.

2. Stachowiak, G. Peter J. Blau (2017): Tribosystem Analysis: A Practical Approach to the Diagnosis of Wear Problems. Tribol Lett 65, 136.

3. Blau, P.J. (2009) Friction Science and Technology: From Concepts to Applications. CRC Press, Boca Raton, 43-118.

4. Mikhail S. Blanter, Igor S. Golovin, Hartmut Neuhäuser, Hans-Rainer Sinning Internal Friction in Metallic Materials. Springer Berlin, Heidelberg. 12 June 2007.

5. Clogston A.M.. Relaxation phenomena in ferrites. The Bell System Technical Journal. Volume: 34, Issue: 4, July 1955.

6. Morris J.G. Dynamic strain aging in aluminum alloys. Materials Science and Engineering. Volume 13, Issue 2, February 1974, Pages 101-108.Materials Testing Laboratory. URL: https://kois.prz.edu.pl/en/laboratories/materials-testing-laboratory (дата звернення : 01.08.2024).

7. Аулін В.В., Головатий А.О., Мірний В.Ю., Кузик О.В. Розробка технологій зміцнення деталей сільськогосподарської техніки з урахуванням зовнішнього та внутрішнього тертя в матеріалах. Збірник тез І Всеукраїнської науково-практичної конференції студентів та молодих науковців "Перспективи та тенденції розвитку конструкцій сільськогосподарських машин та знарядь". 16-17 жовтня 2014 р. Житомир: Житомирський агротехнічний коледж, 2014. С. 52-54.

8. Аулін В.В. Фізичні основи процесів і станів самоорганізації в триботехнічних системах: Монографія. Кіровоград: КОД, 2014. 370 с.

9. Шевеля В.В., Олександренко В.П. Трибохимія та реологія зносостійкості: монографія. Хмельницький: ХНУ. 2006. 278 с.

10. Baker L.J., Parker J.D., Daniel S.R. The use of internal friction techniques as a quality control tool in the mild steel industry. Journal of Materials Processing Technology. 2003. Vol. 143-144. p. 442-447.

11. Hoyos J.J., Ghilarducci A.A., Salva H.R., Chaves C.A., Vélez J.M. (2011). Effects of tempering on internal friction of carbon steels. Materials Science and Engineering: Properties, Microstructure and Processing. Vol. 528, Issue 9. p. 3385-3389.

12. Leisure R.G., Foster K., Hightower J.E., Agosta D.S. Internal friction studies by resonant ultrasound spectroscopy. Materials Science and Engineering: A. Proceedings of the 13th International Conference of Internal Friction and Mechanical Spectroscopy. 2004. Vol. 370, Issues 1-2. p. 34-40.

13. Li S., Deng L., Wu X., Wang H., Min Y. Low-frequency internal friction investigating of the carbide precipitation in solid solution during tempering in high alloyed martensitic steel. Materials Science and Engineering: A. 2010. Vol. 527, Issue 26. p. 6899-6903.

14. Lu X., Jin M., Zhao H., Li W., Jin X. Origin of low-temperature shoulder internal friction peak of Snoek-Kester peak in a medium carbon high alloyed steel. Solid State Communications. 2014. Vol. 195. p. 31-34.

15. Shevelya V., Sokolan J., Kupiec B., Korenivskiy M. Effect of Viscoelastic Properties of Treated Steel on the Rheology and Dissipative Properties of Frictional Contact. Archives of Foundry Engineering. 2-14. Vol. 14, Special Issue 1. p. 193-198.

16. Shevelya V. V., Sokolan Yu. S. Dynamic relaxation processes in steel friction under the action of heat treatment. Strength of Materials. 2015. Vol. 47, No. 4. p. 524-531.

17. Tkalcec J., Mari D. Internal friction in martensitic, ferritic and bainitic carbon steel; cold work effects. Materials Science and Engineering: A. 2011. Vol. 370, Issues 1-2. p. 213-217.

18. Tkalcec J., Mari D., Benoit W. Correlation between internal friction background and the concentration of carbon in solid solution in a martensitic steel. Materials Science and Engineering: A. Proceedings of the 14th International Conference of Internal Friction and Mechanical Spectroscopy. 2006. Vol. 442, Issues 1-2. p. 471-475.

19. Zheng S., Urueña J. M., Dunn A. C., Uhl J. T., and Dahmen K. A. Similarity of internal and external friction: Soft matter frictional instabilities obey mean field dissipation through slip avalanches. Phys. Rev. Research 2020. 2. 042016(R).

20. The basic principles and applications of internal friction and mechanical spectroscopy [J]. PHYSICS, 2011, 40(12): 786-793.

21. Wert C. A. Internal friction in solids. J. Appl. Phys. 1986. 60, 1888-1895.

22. Nian Yin, Zhiguo Xing, Ke He, Zhinan Zhang. Tribo-informatics approaches in tribology research: A review, Friction, 2020. 1, p. 1-22.

23. Nian Yin and Zhinan Zhang. Tribo-Informatics: The Systematic Fusion of AI and tribology. CRC Press. 2014. 220.

Copyright (c) 2024 Viktor Aulin, Oleksandr Kuzyk, Andrii Tykhyi, Serhii Lysenko, Inna Zhylova