DOI: https://doi.org/10.32515/2664-262X.2025.11(42).1.167-178

Аналіз конструктивних особливостей машин для очищення насіння рицини

Г. В. Теслюк, В. В. Головченко

Про авторів

Г. В. Теслюк, доцент, кандидат технічних наук, Дніпровський державний аграрно-економічний університет, м. Дніпро, Україна, e-mail: tesliuk_h@ukr.net, ORCID ID: 0000-0003-4541-5720

В. В. Головченко, здобувач третього (освітньо-наукового)рівня вищої освіти, Дніпровський державний аграрно-економічний університет, м. Дніпро, Україна, e-mail: super-shm@ukr.net

Анотація

У статті проведено аналіз сучасного стану розвитку технологій очищення насіння рицини та виявлено основні недоліки існуючих рішень. Встановлено, що традиційні методи лущення, засновані на механічному впливі (тертя, стиснення, удар), мають низьку ефективність, призводять до значного пошкодження насіння та потребують удосконалення для підвищення якості очищення. Проведено класифікації принципових схем будови робочих зон машин для розлущування плоду та відокремлення насіння рицини та машин для очищення насіннєвої суміші. Встановлено, що під час технологічних операцій розлущування плоду і відокремлення насіння рицини утворюється суміш, яка містить три основні компоненти: нерозлущені або частково розлущені плоди (великі важкі компоненти), насіння рицини (середні компоненти) і лушпиння (маленькі легкі компоненти). У цьому випадку найкраще використовувати аеродинамічну сепарацію суміші з елементами решітного сепаратора. З урахуванням цього складено технологічну схему машини для очищення насіння рицини, основними робочими органами якої є нерухома гумова дека, рухомий вертикальний конусоподібний гумовий валок, решето і циклонний сепаратор. Надалі передбачено розробку конструкції машини для очищення насіння рицини на базі розробленої технологічної схеми, обґрунтування її конструктивно-технологічних параметрів, виготовлення і впровадження у виробництво.

Ключові слова

рицина, насіння, плід, лушпиння, насіннєва суміш, лущення, очищення, сепарація, технологічна схема, машина

Повний текст:

PDF

Посилання

1. European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Closing the Loop—An EU Action Plan for the Circular Economy; COM/2015/0614; European Commission: Bruxelles, Belgium, 2015. http://bastion.wum.edu.pl/wp-content/uploads/2013/09/Europe-2020-Flagship-Initiative-Innovation-Union.pdf.

2. Janiszewska, D., Olchowski, R., Nowicka, A., Zborowska, M., Marszałkiewicz, K., Shams, M., Giannakoudakis, D.A., Anastopoulos, I., Barczak, M. (2021). Activated biochars derived from wood biomass liquefaction residues for effective removal of hazardous hexavalent chromium from aquatic environments. GCB Bioenergy. 13: 1247–1259. DOI: 10.1111/gcbb.12839.

3. Park, K., Sanjaya, S.A., Quach, T., Cahoon, E.B. (2021). Toward sustainable production of value-added bioenergy and industrial oils in oilseed and biomass feedstocks. GCB Bioenergy. 13: 1610–1623. DOI: 10.1111/gcbb.12883.

4. Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R.C., Gross, K.L., Robertson, G.P. (2013). Sustainable bioenergy production from marginal lands in the US Midwest. Nature. 493: 514–517. DOI: 10.1038/nature11811.

5. Von Cossel, M., Lewandowski, I., Elbersen, B., Staritsky, I., Van Eupen, M., Iqbal, Y., Mantel, S., Scordia, D., Testa, G., Cosentino, S.L. (2019). Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies. 12: 3123. DOI: 10.3390/en12163123.

6. Zanetti, F., Monti, A., Berti, M.T. (2013). Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Ind. Crops Prod. 50: 580–595. DOI: 10.1016/j.indcrop.2013.08.030.

7. Alexopoulou, E., Papatheohari, Y., Zanetti, F., Tsiotas, K., Papamichael, I., Christou, M., Namatov, I., Monti, A. (2015). Comparative studies on several castor (Ricinus communis L.) hybrids: Growth, yields, seed oil and biomass characterization. Ind. Crops Prod. 75: 8–13. DOI: 10.1016/j.indcrop.2015.07.015.

8. Vedmedeva, K.V., Kavyazina, M.Yu., Makhov, T.V. (2018). Otsinka zrazkiv rytsyny za hospodarsʹko – tsinnymy oznakamy [Evaluation of castor oilseed samples by economic and valuable characteristics]. Scientific and technical bulletin of the Institute of Oilseeds of the NAAS. 26: 39-48. https://bulletin.imk.zp.ua/pdf/2018/26/Vedmedeva2_26.pdf [in Ukrainian].

9. Carrino, L., Visconti, D., Fiorentino, N., Fagnano, M. (2020). Biofuel Production with Castor Bean: A Win–Win Strategy for Marginal Land. Agronomy. 10: 1690. DOI: 10.3390/agronomy10111690.

10. Bateni, H., Karimi, K. (2016). Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chem. Eng. Res. Des. 107: 4–12. DOI: 10.1016/j.cherd.2015.08.014.

11. Ogunniyi, D.S. (2006). Castor oil: A vital industrial raw material. Bioresour. Technol. 97: 1086–1091. DOI: 10.1016/j.biortech.2005.03.028.

12. Pędzik, M., Janiszewska, D., Rogoziński, T. (2021). Alternative lignocellulosic raw materials in particleboard production: A review. Ind. Crops Prod. 174: 114162. DOI: 10.1016/j.indcrop.2021.114162.

13. Anjani, K. (2012). Castor genetic resources: A primary gene pool for exploitation. Ind. Crops Prod. 35: 1–14. DOI: 10.1016/j.indcrop.2011.06.011.

14. Vallejos, M., Rondanini, D., Wassner, D.F. (2011). Water relationships of castor bean (Ricinus communis L.) seeds related to final seed dry weight and physiological maturity. Eur. J. Agron. 35: 93–101. DOI: 10.1016/j.eja.2011.04.003.

15. Koutroubas, S.D., Papakosta, D.K., Doitsinis, A. (1999). Adaptation and yielding ability of castor plant (Ricinus communis L.) genotypes in a Mediterranean climate. Eur. J. Agron. 11: 227–237. DOI: 10.1016/S1161-0301(99)00034-9.

16. Pari, L., Latterini, F., Stefanoni, W. (2020). Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art. Agriculture. 10: 309. DOI: 10.3390/agriculture10080309.

17. Aliiev, E.B. (2020). Mekhaniko-tekhnolohichni osnovy protsesu pretsyziynoyi separatsiyi nasinnyevoho materialu sonyashnyku [Mechanical and technological foundations of the process of precision separation of sunflower seed material]: dissertation ... Dr. Tech. Sciences: 05.05.11. Zaporizhzhia. 530 p.. [in Ukrainian].

18. Aliiev, E.B. (2019). Fizyko-matematychni modeli protsesiv pretsyziynoyi separatsiyi nasinnyevoho materialu sonyashnyku: monohrafiya [Physical and mathematical models of processes of precision separation of sunflower seed material: monograph]. Zaporizhzhia: STATUS. 196 p. aliev.in.ua/doc/knigi/kniga_4.pdf [in Ukrainian].

19. Petrachenko, D.O., Moher, Y.V., Koropchenko, S.P. (2023). Tekhnolohiya obrushennya nasinnya promyslovykh konopelʹ dlya maloho biznesu [Technology of crushing industrial hemp seeds for small businesses. Scientific monograph]. Riga, Latvia: «Baltija Publishing». 645-671. DOI: 10.30525/978-9934-26-328-6-29 [in Ukrainian].

20. Teslyuk, G.V. (2010). Obgruntuvannya tekhnolohichnoho protsesu, parametriv ta rezhymiv roboty mashyny dlya vydilennya nasinnya harbuza [Justification of the technological process, parameters and operating modes of the machine for extracting pumpkin seeds]: dissertation ... candidate of technical sciences: 05.05.11. Dnipropetrovsk. 147 p.. https://uacademic.info/ua/document/0410U001669 [in Ukrainian].

21. Samoychuk, K.O., Palyanychka, N.O., Verkholantseva, V.O. (2021). Tekhnolohichne obladnannya dlya vyrobnytstva roslynnoyi oliyi [Technological equipment for the production of vegetable oil. Electronic textbook]. https://elib.tsatu.edu.ua/dep/mtf/ophv_29/index.html [in Ukrainian].

22. Shevchuk, V.V., Sukach, O.M. (2018). Processes and means for grinding oilseeds: monograph. Lviv: Lviv National Agrarian University. 105 p. https://repository.lnup.edu.ua/jspui/bitstream/123456789/558/1/ Shevchuk_monograf.pdf [in Ukrainian].

23. Didur, V.V. (2020). Mechanical and technological foundations of deep processing of castor seeds in the conditions of a small-scale enterprise: dissertation ... Dr. Tech. Sciences: 05.05.11. Melitopol. 504 p.http://www.tsatu.edu.ua/nauka/wp-content/uploads/sites/49/dyssertacyja-dydur-vv_.pdf [in Ukrainian].

24. Yang, L., Chen, H., Xiao, J., Fan, Y., Song, S., Zhang, Y., Liu, X. (2021). Research on Structural–Mechanical Properties during the Castor Episperm Breaking Process. Processes. 9: 1777. DOI: 10.3390/pr9101777.

25. Balami, A.A., Adgidzi, D., Kenneth, C.A., Lamuwa, G. (2012). Performance Evaluation of a Dehusking and Shelling Machine for Castor Fruits and Seeds. IOSR Journal of Engineering (IOSRJEN). 2 (10): 44–48. DOI: 10.9790/3021-021014448.

26. Yakubu, A.U., Muhammad, U.S., Isiaka, M., Sada, A.M., Saleh, A. (2020). Development of Castor (Ricnus Commnis ) Seeds Shelling Machine. Nigerian Journal of Engineering. 27 (3): 28–34.

27. Yakubu, A.U., Muhammad, U.S., Ishiaka, M., Muhammmad, S.A., Sale, N.A. (2020). Development and Performance Evaluation of a Castor Seed (Ricnus Communis) Shelling Machine with a Winnowing System. FUOYE Journal of Engineering and Technology (FUOYEJET). 5 (1): 2–5. DOI: 10.46792/fuoyejet.v5i1.430.

28. Pius, C.O., Nnaemeka, S.P.O., Charles, O., Vincent, N.O., Chinenye, A.I. (2014). Design Enhancement Evaluation of a Castor Seed Shelling Machine. Journal of Scientific Research and Reports. 3 (7): 924–938. DOI: 10.9734/JSRR/2014/5557.

29. Hou, J., Liu, X., Zhu, H., Ma, Z., Tang, Z., Yu, Y., Jin, J., Wang, W. (2023). Design and Motion Process of Air-Sieve Castor Cleaning Device Based on Discrete Element Method. Agriculture. 13(6): 1130. DOI: 10.3390/agriculture13061130.

Пристатейна бібліографія ГОСТ

1. European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Closing the Loop—An EU Action Plan for the Circular Economy; COM/2015/0614; European Commission: Bruxelles, Belgium, 2015. http://bastion.wum.edu.pl/wp-content/uploads/2013/09/Europe-2020-Flagship-Initiative-Innovation-Union.pdf

2. Janiszewska D., Olchowski R., Nowicka A., Zborowska M., Marszałkiewicz K., Shams M., Giannakoudakis D.A., Anastopoulos I., Barczak M. Activated biochars derived from wood biomass liquefaction residues for effective removal of hazardous hexavalent chromium from aquatic environments. GCB Bioenergy. 2021. 13: 1247–1259. DOI: 10.1111/gcbb.12839

3. Park K., Sanjaya S.A., Quach T., Cahoon E.B. Toward sustainable production of value-added bioenergy and industrial oils in oilseed and biomass feedstocks. GCB Bioenergy. 2021. 13: 1610–1623. DOI: 10.1111/gcbb.12883

4. Gelfand I., Sahajpal R., Zhang X., Izaurralde R.C., Gross K.L., Robertson G.P. Sustainable bioenergy production from marginal lands in the US Midwest. Nature. 2013. 493: 514–517. DOI: 10.1038/nature11811

5. Von Cossel M., Lewandowski I., Elbersen B., Staritsky I., Van Eupen M., Iqbal Y., Mantel S., Scordia D., Testa G., Cosentino S.L. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies. 2019. 12: 3123. DOI: 10.3390/en12163123

6. Zanetti F., Monti A., Berti M.T. Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Ind. Crops Prod. 2013. 50: 580–595. DOI: 10.1016/j.indcrop.2013.08.030

7. Alexopoulou E., Papatheohari Y., Zanetti F., Tsiotas K., Papamichael I., Christou M., Namatov I., Monti A. Comparative studies on several castor (Ricinus communis L.) hybrids: Growth, yields, seed oil and biomass characterization. Ind. Crops Prod. 2015. 75: 8–13. DOI: 10.1016/j.indcrop.2015.07.015

8. Ведмедєва К.В., Кавязіна М.Ю., Махова Т.В. Оцінка зразків рицини за господарсько – цінними ознаками. Науково-технічний бюлетень Інституту олійних культур НААН. 2018. 26: 39-48. https://bulletin.imk.zp.ua/pdf/2018/26/Vedmedeva2_26.pdf

9. Carrino L., Visconti D., Fiorentino N., Fagnano M. Biofuel Production with Castor Bean: A Win–Win Strategy for Marginal Land. Agronomy. 2020. 10: 1690. DOI: 10.3390/agronomy10111690

10. Bateni H., Karimi K. Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chem. Eng. Res. Des. 2016. 107: 4–12. DOI: 10.1016/j.cherd.2015.08.014

11. Ogunniyi D.S. Castor oil: A vital industrial raw material. Bioresour. Technol. 2006. 97: 1086–1091. DOI: 10.1016/j.biortech.2005.03.028

12. Pędzik M., Janiszewska D., Rogoziński T. Alternative lignocellulosic raw materials in particleboard production: A review. Ind. Crops Prod. 2021. 174: 114162. DOI: 10.1016/j.indcrop.2021.114162

13. Anjani K. Castor genetic resources: A primary gene pool for exploitation. Ind. Crops Prod. 2012. 35: 1–14. DOI: 10.1016/j.indcrop.2011.06.011

14. Vallejos M., Rondanini D., Wassner D.F. Water relationships of castor bean (Ricinus communis L.) seeds related to final seed dry weight and physiological maturity. Eur. J. Agron. 2011. 35: 93–101. DOI: 10.1016/j.eja.2011.04.003

15. Koutroubas S.D., Papakosta D.K., Doitsinis A. Adaptation and yielding ability of castor plant (Ricinus communis L.) genotypes in a Mediterranean climate. Eur. J. Agron. 1999. 11: 227–237. DOI: 10.1016/S1161-0301(99)00034-9

16. Pari L., Latterini F., Stefanoni W. Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art. Agriculture. 2020. 10: 309. DOI: 10.3390/agriculture10080309

17. Алієв Е.Б. Механіко-технологічні основи процесу прецизійної сепарації насіннєвого матеріалу соняшнику: дис. ... д-ра техн. наук: 05.05.11. Запоріжжя. 2020. 530 с.

18. Алієв Е.Б. Фізико-математичні моделі процесів прецизійної сепарації насіннєвого матеріалу соняшнику: монографія. Запоріжжя: СТАТУС. 2019. 196 с. https://aliev.in.ua/doc/knigi/kniga_4.pdf

19. Петраченко Д.О., Мохер Ю.В., Коропченко С.П. Технологія обрушення насіння промислових конопель для малого бізнесу. Scientific monograph. Riga, Latvia: «Baltija Publishing». 2023. 645-671. DOI: 10.30525/978-9934-26-328-6-29

20. Теслюк Г.В. Обґрунтування технологічного процесу, параметрів та режимів роботи машини для виділення насіння гарбуза: дис. ... канд. техн. наук: 05.05.11. Дніпропетровськ. 2010. 147 с. https://uacademic.info/ua/document/0410U001669

21. Самойчук К.О., Паляничка Н.О., Верхоланцева В.О. Технологічне обладнання для виробництва рослинної олії. Електронний навчальний посібник. 2021. https://elib.tsatu.edu.ua/dep/mtf/ophv_29/index.html

22. Шевчук В.В., Сукач О.М. Процеси і засоби для подрібнення насіння олійних культур: монографія. Львів: Львівський національний аграрний університет. 2018. 105 с. https://repository.lnup.edu.ua/jspui/bitstream/123456789/558/1/ Shevchuk_monograf.pdf

23. Дідур В.В. Механіко-технологічні основи глибокої переробки насіння рицини в умовах малотоннажного підприємства: дис. ... д-ра техн. наук: 05.05.11. Мелітополь. 2020. 504 с. http://www.tsatu.edu.ua/nauka/wp-content/uploads/sites/49/dyssertacyja-dydur-vv_.pdf

24. Yang L., Chen H., Xiao J., Fan Y., Song S., Zhang Y.,Liu X. Research on Structural–Mechanical Properties during the Castor Episperm Breaking Process. Processes. 2021. 9: 1777. DOI: 10.3390/pr9101777

25. Balami A.A., Adgidzi D., Kenneth C.A., Lamuwa G. Performance Evaluation of a Dehusking and Shelling Machine for Castor Fruits and Seeds. IOSR Journal of Engineering (IOSRJEN). 2012. 2 (10): 44–48. DOI: 10.9790/3021-021014448

26. Yakubu A.U., Muhammad U.S., Isiaka M., Sada A.M., Saleh A. Development of Castor (Ricnus Commnis ) Seeds Shelling Machine. Nigerian Journal of Engineering. 2020. 27 (3): 28–34.

27. Yakubu A.U., Muhammad U.S., Ishiaka M., Muhammmad S.A., Sale N.A. Development and Performance Evaluation of a Castor Seed (Ricnus Communis) Shelling Machine with a Winnowing System. FUOYE Journal of Engineering and Technology (FUOYEJET). 2020. 5 (1): 2–5. DOI: 10.46792/fuoyejet.v5i1.430

28. Pius C.O., Nnaemeka S.P.O., Charles O., Vincent N.O., Chinenye A.I. Design Enhancement Evaluation of a Castor Seed Shelling Machine. Journal of Scientific Research and Reports. 2014. 3 (7): 924–938. DOI: 10.9734/JSRR/2014/5557

29. Hou J., Liu X., Zhu H., Ma Z., Tang Z., Yu Y., Jin J., Wang W. Design and Motion Process of Air-Sieve Castor Cleaning Device Based on Discrete Element Method. Agriculture. 2023. 13(6): 1130. DOI: 10.3390/agriculture13061130


Copyright (c) 2025 Г. В. Теслюк, В. В. Головченко