DOI: https://doi.org/10.32515/2664-262X.2025.11(42).1.121-128
Формозміна пустотілих поковок по типу гільз у процесі протяжки без оправки бійками зі скосам
Про авторів
О. Є. Марков, професор, доктор технічних наук, докторант, Донбаська державна машинобудівна академія, м. Краматорськ-Тернопіль, Україна, e-mail: oleg.markov.omd@gmail.com, ORCID ID: 0000-0001-9377-9866
Є. С. Музикін, магістр, ТОВ «Дніпровський електро-механічний завод», м. Дніпро, Україна, e-mail: metalworkingplant@gmail.com, ORCID ID: 0009-0004-7685-4392
П. С. Музикін, магістр, ТОВ «Дніпровський електро-механічний завод», м. Дніпро, Україна, e-mail: metalworkingplant@gmail.com, ORCID ID: 0009-0000-7490-3219
Анотація
У статті розроблено новий техпроцес деформування поковок по типу довгих гільз ромбічними бойками з ухилами. Вивчення процесу деформування дозволило з’ясувати закономірності формозмінення пустотілої заготовки для нового технологічного процесу. Досліджувалися кути вирізів та ухилів бойків (10°, 20° і 30°) і довжина подачі заготовки у бойки. При подачах, що дорівнюють 0,1D та куті вирізу ромбічних бойків в 115° проходить мінімальне закриття отвору пустотілої заготовки. Ефективною геометрією деформуючого інструменту для збільшення коефіцієнту витяжки при деформуванні пустотілих гільз слід використовувати ромбічні бойки з ухилом скосів 10...20° і довжиною подачі заготовки b/D=0,1. Кривізна торця отвору дорівнює припуску на мехобробку, що забезпечує отримання потрібних розмірів і форми поковки без використання оправки.
Ключові слова
деформування, внутрішній отвір, протяжка, МСЕ, деформації, оправка
Повний текст:
PDF
Посилання
1. Zhu Baiqing, Lu Haixing, Tong Yifei, Li Dongbo, Xia Yong. (2015). Research on Charging Combination Based on Batch Weight Fit Rule for Energy Saving in Forging. Mathematical Problems in Engineering, Article ID 531756. 9 pages. http://dx.doi.org/10.1155/2015/531756.
2. Askelianets, А. (2014). Analysis of theoretic research of the ring tapered tool penetration with subsequent upsetting in the lining ring while manufacturing a disc with shoulder. Metallurgical and Mining Industry, 4. 70–75.
3. Yunjian Wu, Xianghuai Dong, Qiong Yu. (2015). Upper bound analysis of axial metal flow inhomogeneity in radial forging process. International Journal of Mechanical Sciences, 93, 102–110.
4. Sizek, H. W. (1995). Radial Forging. Metalworking: Bulk Forming, 178.
5. Ghaei, А. Movahhedy, M. R., Karimi Taheri A. (2008). Finite element modelling simulation of radial forging of tubes without mandrel. Materials & Design, 29, 867–872.
6. Fan, L., Wang Z., Wang H. (2014). 3D finite element modeling and analysis of radial forging processes. Journal of Manufacturing Processes, 16, 329–334.
7. Burkin, S. P. et al. (1996). A vertical automated forging center for the plastic deformation of continuouslycast ingots. Journal of Materials Processing Technology, 58, 170–173.
8. Zhang, Q., et al. (2014). Rotary swaging forming process of tube workpieces. 11th International Conference on Technology of Plasticity, ICTP 2014. October 2014. Nagoya Congress Center, Nagoya, Japan. Procedia Engineering, N 81, pp. 2336–2341.
9. Sanjari, M., et al. (2012). Determination of strain field and heterogeneity in radial forging of tube using finite element method and microhardness test. Materials and Design, 38, 147–153.
10. Wang, Z. G. (2011). The theory analysis and numerical simulation for the radial forging process of gun barrel. Nanjing University of Science and Technology, 14, 28–30.
11. Knauf, F., et al. (2011). Latest Development in Railway Axle and ThickWalled Tube forging on a Hydraulic Radial Forging Machine Type SMX. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh, PA, USA. September 12–15, 215–220.
12. Koppensteiner, R. Tang, Z. (2011). Optimizing Tooling And Pass Design For Effectiveness On Forged Product. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh, PA, USA. September 12–15, 225–229.
13. Sheu, J.J., Lin, SuYi., Yu, C. H. (2014). Optimum die design for single pass steel tube drawing with large strain deformation. 11th International Conference on Technology of Plasticity. ICTP 2014. 1924 October 2014. Nagoya Congress Center, Nagoya, Japan. Procedia Engineering, 81, 688–693.
14. Jaouen, О., et al. (2011). From Hollow Ingot to Shell with a Powerful Numerical Simulation Software Tool. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh. PA. USA. September 12–15, pp. 513–518.
15. Li ,Y., et al. (2013). Numerical simulation and experimental study on the tube sinking of a thinwalled copper tube with axially inner micro grooves by radial forging. Journal of Materials Processing Technology, 213, 987–996.
Пристатейна бібліографія ГОСТ
1. Research on Charging Combination Based on Batch Weight Fit Rule for Energy Saving in Forging / Zhu Baiqing, Lu Haixing, Tong Yifei, Li Dongbo, Xia Yong. Mathematical Problems in Engineering. 2015. Article ID 531756. 9 pages. http://dx.doi.org/10.1155/2015/531756.
2. Askelianets, А. Analysis of theoretic research of the ring tapered tool penetration with subsequent upsetting in the lining ring while manufacturing a disc with shoulder. Metallurgical and Mining Industry. 2014. № 4. С. 70–75.
3. Wu, Y. Upper bound analysis of axial metal flow inhomogeneity in radial forging process / Yunjian Wu, Xianghuai Dong, Qiong Yu. International Journal of Mechanical Sciences. 2015. N 93. Р. 102–110.
4. Sizek, H. W. Radial Forging. Metalworking : Bulk Forming. 2005. P. 172–178.
5. Ghaei, А. Finite element modelling simulation of radial forging of tubes without mandrel / А. Ghaei, M. R. Movahhedy, A. Karimi Taheri. Materials & Design. 2008. № 29. P. 867–872.
6. Fan, L. 3D finite element modeling and analysis of radial forging processes / Lixia Fan, Zhigang Wang, He Wang. Journal of Manufacturing Processes. 2014. N 16. Р. 329–334.
7. A vertical automated forging center for the plastic deformation of continuouslycast ingots / S. P. Burkin, E. A. Korshunov , V. L. Kolmogorov, N. A. Babailov, V. M. Nalesnik. Journal of Materials Processing Technology. 1996. № 58. P. 170–173.
8. Rotary swaging forming process of tube workpieces / Qi Zhang, Kaiqiang Jin, Dong mu, Pengju Ma, Jie Tian. 11th International Conference on Technology of Plasticity, ICTP 2014. October 2014. Nagoya Congress Center, Nagoya, Japan. Procedia Engineering. 2014. N 81. Р. 2336–2341.
9. Determination of strain field and heterogeneity in radial forging of tube using finite element method and microhardness test / M. Sanjari, P. Saidi, A. Karimi Taheri, M. HosseinZadeh. Materials and Design. 2012. N 38. Р. 147–153.
10. Wang, Z. G. The theory analysis and numerical simulation for the radial forging process of gun barrel / Z. G. Wang. Nanjing University of Science and Technology. 2011. Р. 28–30.
11. Latest Development in Railway Axle and ThickWalled Tube forging on a Hydraulic Radial Forging Machine Type SMX / Frederik Knauf, PaulJosef Nieschwitz, Albrecht Holl, Hans Pelster, Rolf Vest. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh, PA, USA. September 12–15. 2011. Р. 215–220.
12. Koppensteiner, R. Optimizing Tooling And Pass Design For Effectiveness On Forged Product / Robert Koppensteiner, Zack Tang. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh, PA, USA. September 12–15. 2011. Р. 225–229.
13. Sheu, J.J. Optimum die design for single pass steel tube drawing with large strain deformation / JinnJong Sheu, SuYi Lin, ChengHsien Yu. 11th International Conference on Technology of Plasticity. ICTP 2014. 1924 October 2014. Nagoya Congress Center, Nagoya, Japan. Procedia Engineering. 2014. N 81. Р. 688–693.
14. Jaouen, О. From Hollow Ingot to Shell with a Powerful Numerical Simulation Software Tool / О. Jaouen, F. Costes, P. Lasne, M. Barbelet. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh. PA. USA. September 12–15. 2011. Р. 513–518.
15. Li ,Y. Numerical simulation and experimental study on the tube sinking of a thinwalled copper tube with axially inner micro grooves by radial forging / Yong Li, Ting He, Zhixin Zeng. Journal of Materials Processing Technology. 2013. N 213. Р. 987–996.
Copyright (c) 2025 О. Є. Марков, Є. С. Музикін, П. С. Музикін
Формозміна пустотілих поковок по типу гільз у процесі протяжки без оправки бійками зі скосам
Про авторів
О. Є. Марков, професор, доктор технічних наук, докторант, Донбаська державна машинобудівна академія, м. Краматорськ-Тернопіль, Україна, e-mail: oleg.markov.omd@gmail.com, ORCID ID: 0000-0001-9377-9866
Є. С. Музикін, магістр, ТОВ «Дніпровський електро-механічний завод», м. Дніпро, Україна, e-mail: metalworkingplant@gmail.com, ORCID ID: 0009-0004-7685-4392
П. С. Музикін, магістр, ТОВ «Дніпровський електро-механічний завод», м. Дніпро, Україна, e-mail: metalworkingplant@gmail.com, ORCID ID: 0009-0000-7490-3219
Анотація
Ключові слова
Повний текст:
PDFПосилання
1. Zhu Baiqing, Lu Haixing, Tong Yifei, Li Dongbo, Xia Yong. (2015). Research on Charging Combination Based on Batch Weight Fit Rule for Energy Saving in Forging. Mathematical Problems in Engineering, Article ID 531756. 9 pages. http://dx.doi.org/10.1155/2015/531756.
2. Askelianets, А. (2014). Analysis of theoretic research of the ring tapered tool penetration with subsequent upsetting in the lining ring while manufacturing a disc with shoulder. Metallurgical and Mining Industry, 4. 70–75.
3. Yunjian Wu, Xianghuai Dong, Qiong Yu. (2015). Upper bound analysis of axial metal flow inhomogeneity in radial forging process. International Journal of Mechanical Sciences, 93, 102–110.
4. Sizek, H. W. (1995). Radial Forging. Metalworking: Bulk Forming, 178.
5. Ghaei, А. Movahhedy, M. R., Karimi Taheri A. (2008). Finite element modelling simulation of radial forging of tubes without mandrel. Materials & Design, 29, 867–872.
6. Fan, L., Wang Z., Wang H. (2014). 3D finite element modeling and analysis of radial forging processes. Journal of Manufacturing Processes, 16, 329–334.
7. Burkin, S. P. et al. (1996). A vertical automated forging center for the plastic deformation of continuouslycast ingots. Journal of Materials Processing Technology, 58, 170–173.
8. Zhang, Q., et al. (2014). Rotary swaging forming process of tube workpieces. 11th International Conference on Technology of Plasticity, ICTP 2014. October 2014. Nagoya Congress Center, Nagoya, Japan. Procedia Engineering, N 81, pp. 2336–2341.
9. Sanjari, M., et al. (2012). Determination of strain field and heterogeneity in radial forging of tube using finite element method and microhardness test. Materials and Design, 38, 147–153.
10. Wang, Z. G. (2011). The theory analysis and numerical simulation for the radial forging process of gun barrel. Nanjing University of Science and Technology, 14, 28–30.
11. Knauf, F., et al. (2011). Latest Development in Railway Axle and ThickWalled Tube forging on a Hydraulic Radial Forging Machine Type SMX. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh, PA, USA. September 12–15, 215–220.
12. Koppensteiner, R. Tang, Z. (2011). Optimizing Tooling And Pass Design For Effectiveness On Forged Product. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh, PA, USA. September 12–15, 225–229.
13. Sheu, J.J., Lin, SuYi., Yu, C. H. (2014). Optimum die design for single pass steel tube drawing with large strain deformation. 11th International Conference on Technology of Plasticity. ICTP 2014. 1924 October 2014. Nagoya Congress Center, Nagoya, Japan. Procedia Engineering, 81, 688–693.
14. Jaouen, О., et al. (2011). From Hollow Ingot to Shell with a Powerful Numerical Simulation Software Tool. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh. PA. USA. September 12–15, pp. 513–518.
15. Li ,Y., et al. (2013). Numerical simulation and experimental study on the tube sinking of a thinwalled copper tube with axially inner micro grooves by radial forging. Journal of Materials Processing Technology, 213, 987–996.
Пристатейна бібліографія ГОСТ
1. Research on Charging Combination Based on Batch Weight Fit Rule for Energy Saving in Forging / Zhu Baiqing, Lu Haixing, Tong Yifei, Li Dongbo, Xia Yong. Mathematical Problems in Engineering. 2015. Article ID 531756. 9 pages. http://dx.doi.org/10.1155/2015/531756.
2. Askelianets, А. Analysis of theoretic research of the ring tapered tool penetration with subsequent upsetting in the lining ring while manufacturing a disc with shoulder. Metallurgical and Mining Industry. 2014. № 4. С. 70–75.
3. Wu, Y. Upper bound analysis of axial metal flow inhomogeneity in radial forging process / Yunjian Wu, Xianghuai Dong, Qiong Yu. International Journal of Mechanical Sciences. 2015. N 93. Р. 102–110.
4. Sizek, H. W. Radial Forging. Metalworking : Bulk Forming. 2005. P. 172–178.
5. Ghaei, А. Finite element modelling simulation of radial forging of tubes without mandrel / А. Ghaei, M. R. Movahhedy, A. Karimi Taheri. Materials & Design. 2008. № 29. P. 867–872.
6. Fan, L. 3D finite element modeling and analysis of radial forging processes / Lixia Fan, Zhigang Wang, He Wang. Journal of Manufacturing Processes. 2014. N 16. Р. 329–334.
7. A vertical automated forging center for the plastic deformation of continuouslycast ingots / S. P. Burkin, E. A. Korshunov , V. L. Kolmogorov, N. A. Babailov, V. M. Nalesnik. Journal of Materials Processing Technology. 1996. № 58. P. 170–173.
8. Rotary swaging forming process of tube workpieces / Qi Zhang, Kaiqiang Jin, Dong mu, Pengju Ma, Jie Tian. 11th International Conference on Technology of Plasticity, ICTP 2014. October 2014. Nagoya Congress Center, Nagoya, Japan. Procedia Engineering. 2014. N 81. Р. 2336–2341.
9. Determination of strain field and heterogeneity in radial forging of tube using finite element method and microhardness test / M. Sanjari, P. Saidi, A. Karimi Taheri, M. HosseinZadeh. Materials and Design. 2012. N 38. Р. 147–153.
10. Wang, Z. G. The theory analysis and numerical simulation for the radial forging process of gun barrel / Z. G. Wang. Nanjing University of Science and Technology. 2011. Р. 28–30.
11. Latest Development in Railway Axle and ThickWalled Tube forging on a Hydraulic Radial Forging Machine Type SMX / Frederik Knauf, PaulJosef Nieschwitz, Albrecht Holl, Hans Pelster, Rolf Vest. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh, PA, USA. September 12–15. 2011. Р. 215–220.
12. Koppensteiner, R. Optimizing Tooling And Pass Design For Effectiveness On Forged Product / Robert Koppensteiner, Zack Tang. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh, PA, USA. September 12–15. 2011. Р. 225–229.
13. Sheu, J.J. Optimum die design for single pass steel tube drawing with large strain deformation / JinnJong Sheu, SuYi Lin, ChengHsien Yu. 11th International Conference on Technology of Plasticity. ICTP 2014. 1924 October 2014. Nagoya Congress Center, Nagoya, Japan. Procedia Engineering. 2014. N 81. Р. 688–693.
14. Jaouen, О. From Hollow Ingot to Shell with a Powerful Numerical Simulation Software Tool / О. Jaouen, F. Costes, P. Lasne, M. Barbelet. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh. PA. USA. September 12–15. 2011. Р. 513–518.
15. Li ,Y. Numerical simulation and experimental study on the tube sinking of a thinwalled copper tube with axially inner micro grooves by radial forging / Yong Li, Ting He, Zhixin Zeng. Journal of Materials Processing Technology. 2013. N 213. Р. 987–996.
Copyright (c) 2025 О. Є. Марков, Є. С. Музикін, П. С. Музикін