DOI: https://doi.org/10.32515/2664-262X.2019.2(33).161-172
Фрактальний аналіз генератора самоподібного трафіку на основі ланцюга Марков
Об авторах
Г.М Дрєєва, викладач, Центральноукраїнський національний технічний університет, м. Кропивницький, Україна
О.А. Смірнов, професор, доктор технічних наук, Центральноукраїнський національний технічний університет, м. Кропивницький, Україна
О.М. Дрєєв, кандидат технічних наук, Центральноукраїнський національний технічний університет, м. Кропивницький, Україна
Т.В. Смірнова, кандидат технічних наук, Центральноукраїнський національний технічний університет, м. Кропивницький, Україна
Анотація
В даній роботі проведено дослідження фрактальної розмірності часового ряду, який отримано за допомогою генератора самоподібного трафіку на основі ланцюгів Маркова з керованою фрактальною розмірністю. Для цього у роботі були вирішені наступні задачі: на основі числових експериментів визначення фрактальної розмірності генерованих числових послідовностей, показано статистично значимі зміни фрактальних властивостей числової послідовності на різних масштабах; вказано на недостатній розвиток високопродуктивних алгоритмів отримання самоподібних числових послідовностей для імітаційного генерування трафіку в телекомунікаційних системах та мережах; запропоновано напрями подальших досліджень щодо керування явищем мультифрактальності в генераторах, які основані на ланцюгах Маркова. Результатом роботи є обґрунтування підвищення продуктивності імітаційного моделювання руху інформації в телекомунікаційних системах та комп’ютерних мережах за рахунок генератора самоподібного трафіку на ланцюгах Маркова.
Ключові слова
моделювання, трафік, самоподібність, мультифрактал, комп'ютерні мережі
Посилання
1. Jan W. Kantelhardt Fractal and Multifractal Time Series Institute of Physics, Martin-Luther-University Halle-Wittenberg, 06099 Halle, Germany April 4, 2008 42 p. Retrieved from https://arxiv.org/pdf/0804.0747 [in English].
2. Fontugne, Romain and Abry, Patrice and Fukuda, Akira and Veitch, Darryl and Cho, Kenjiro and Borgnat, Pierre and Wendt, Herwig Scaling in Internet Traffic: a 14 year and 3 day longitudinal study, with multiscale analyses and randomprojections. (2017) IEEE/ACM Transactions on Networking journal, 25 (4). 2152-2165. ISSN 1063-6692. Retrieved from https://ieeexplore.ieee.org/document/7878657 [in English].
3. Lyudmyla Kirichenko, Tamara Radivilova, Vitalii Bulakh Machine Learning in Classification Time Series with Fractal Properties. December 2018. URL: https://www.researchgate.net/publication/ 329973801_Machine_Learning_in_Classification_Time_Series_with_Fractal_Properties [in English].
4. Aleksandrov, P.S.& Pasynkov, B.A. (1973). Vvedenie v teoriju razmernosti [Introduction to the theory of dimension]. Moskow: Science [in Russian].
5. Mackenzie Haffey; Martin Arlitt; Carey Williamson, Modeling, Analysis, and Characterization of Periodic Traffic on a Campus Edge Network. 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pр. 170 – 182, 2018. [in English].
6. Lai Simin, Wan Li, Zeng Xiangjian. (2019). Comparative Analysis of Multi-fractal Data Missing Processing Methods. Applied and Computational Mathematics.,Vol. 8, No. 2, 44-49. doi: 10.11648/j.acm.20190802.14 [in English].
7. Mahdi Barat Zadeh Joveini, Javad Sadri аnd Hoda Alavi Khoushhal. Fractal Modeling of Big Data Networks Conference: International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI 2018) At: Center for Pattern Recognition and Machine Intelligence (CENPARMI), Concordia University, Montreal, Canada, pp. 1-4, 2018. [in English].
8. D. Jiang, L. Huo & Y. Li. (2018). Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5) Doi.org/10.1371/journal.pone.0194302 [in English].
9. K. Xie, C. Peng, X. Wang, G. Xie & J. Wen (2017). Accurate recovery of internet traffic data under dynamic measurements, in Proc. of INFOCOM’17, pp. 1–9, 2017. [in English].
10. C. Wang, S. T. Maguluri, and T. Javidi Heavy traffic queue length behavior in switches with reconfiguration delay, in Proc. of INFOCOM’17, pp. 1–9, 2017. [in English].
11. G. Xie, K. Xie, J. Huang Wang X, Chen Y and Wen J. Fast low-rank matrix approximation with locality sensitive hashing for quick anomaly detection, in Proc. of INFOCOM’17, pp. 1–9, 2017. [in English].
12. Tatiana Mikhailovna Tatamikova and Oleg Ivanovich Kutuzov, “Evaluation and comparison of classical and fractal queuing systems”, XV International Symposium Problems of Redundancy in Information and Control Systems, pp.155 - 157, 2016. [in English].
13. Michaі Czarkowski, Sylwester Kaczmarek and Maciej Wolff, “Influence of Self -Similar Traffic Type on Perform ance of QoS Routing Algorithms’, INTL Journal of electronics and telecommunications, vol. 62, no. 1, pp. 81-87, 2016 [in English].
14. Lakhmi Priya Das, Sanjay Kumar Patra and Sarojananda Mishra, “Impact of hurst parameter value in self-similarity behaviour of network traffic”, International Journal of Research in Computer and Communication Technology, Vol 5, No 12, pp.631-633, 2016. [in English].
15. K.V. Ushanev, "Imagination models of the mass service system type Pa / M / 1, H2 / M / 1 and studying on their basis the quality of service of traffic with complex structure", Control systems, communication and security. №4, p.217-251, 2015. [in Russian].
16. Kuchuk, G.A., Mozhayev, O.O. & Vorobeyov, O.V. (2006). The method of prediction of fractal traffic. Radio and Computer Systems, No. 6, 181–188. Retrieved from http://nbuv.gov.ua/UJRN/recs_2006_6_34 [in Russian].
17. Kuchuk, G.A., Mozhayev, O.O. & Vorobeyov, O.V. (2007). Traffic prediction for congestion management integrated telecommunications network. Radio-electronic and computer systems, № 8, 261–271. Retrieved from http://nbuv.gov.ua/UJRN/recs_2007_8_48 [in Russian].
18. Kuchuk, G A., Mozhayev, O.O. & Vorobeyov, O.V. (2006). Analiz that model samoponіbnogo traffic. Aerospace and technology, No. 9, 173–180. Retrieved from http: //nbuv.gov.ua/UJRN/aktit_2006_9_35 [in Ukrainian].
19. Smirnov A.A., Kuznetsov A.A., Danilenko D.A.&, Berezovsky A. (2015). «The statistical analysis of a network traffic for the intrusion detection and prevention systems», Telecommunications and Radio Engineering, Vol,74, Issue 1. – Begel House Inc. Р. 61-78. [in English].
20. Smirnov, O., Kuznetsov, A., Kiian, A., Zamula, A., Rudenko, S., Hryhorenko, V., «Variance Analysis of Networks Traffic for Intrusion Detection in Smart Grids», 2019 IEEE 6th International Conference On Energy Smart Systems (2019 IEEE ESS), Kyiv, Ukraine April 17-19, 2019 P. 353-358. [in English].
21. Smirnov, O., Kuznetsov, A., Kavun, S., Babenko, B., Nakisko, O., Kuznetsova, K. (2019). «Malware Correlation Monitoring in Computer Networks of Promising Smart Grids», 2019 IEEE 6th International Conference On Energy Smart Systems (2019 IEEE ESS), Kyiv, Ukraine April 17-19, 2019 P. 347-352 [in English].
22. Kovalenko, A.A., Kuchuk, G. A. & Mozhaev, A. A. (2010). Construction of exponential time scales in the analysis of multiservice network queues. Radio and Computer Systems. No. 7, 257–262. Retrieved from http://nbuv.gov.ua/UJRN/recs_2010_7_52 [in Russian].
23. Dobrovolsky, E.V. & Nechyporuk. O.L. (2005). Modeling of Network Traffic Using Context Methods Scientific Papers ONAS them. O.S. Popova, No. 1, 24-32 [in Russian].
Пристатейна бібліографія ГОСТ
Jan W. Kantelhardt Fractal and Multifractal Time Series Institute of Physics, Martin-Luther-University Halle-Wittenberg, 06099 Halle, Germany April 4, 2008 42 p. URL: https://arxiv.org/pdf/0804.0747
Fontugne, Romain and Abry, Patrice and Fukuda, Akira and Veitch, Darryl and Cho, Kenjiro and Borgnat, Pierre and Wendt, Herwig Scaling in Internet Traffic: a 14 year and 3 day longitudinal study, with multiscale analyses and randomprojections. (2017) IEEE/ACM Transactions on Networking journal, 25 (4). 2152-2165. ISSN 1063-6692. URL: https://ieeexplore.ieee.org/document/7878657
Lyudmyla Kirichenko, Tamara Radivilova, Vitalii Bulakh Machine Learning in Classification Time Series with Fractal Properties. December 2018. URL: https://www.researchgate.net/publication/329973801_Machine_Learning_in_Classification_Time_Series_with_Fractal_Properties (Last accessed: 17.11.2019)
Александров П.С., Пасынков Б.А. Введение в теорию размерности – М: Наука, 1973. – 576с.
Mackenzie Haffey; Martin Arlitt; Carey Williamson, Modeling, Analysis, and Characterization of Periodic Traffic on a Campus Edge Network. 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pр. 170 – 182, 2018.
Lai Simin, Wan Li, Zeng Xiangjian. Comparative Analysis of Multi-fractal Data Missing Processing Methods. Applied and Computational Mathematics. Vol. 8, No. 2, 2019, pp. 44-49. doi: 10.11648/j.acm.20190802.14.
Mahdi Barat Zadeh Joveini, Javad Sadri аnd Hoda Alavi Khoushhal. Fractal Modeling of Big Data Networks Conference: International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI 2018) At: Center for Pattern Recognition and Machine Intelligence (CENPARMI), Concordia University, Montreal, Canada, pp. 1-4, 2018.
D. Jiang, L. Huo and Y. Li. Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5), 2018. Doi.org/10.1371/journal.pone.0194302
K. Xie, C. Peng, X. Wang, G. Xie and J. Wen Accurate recovery of internet traffic data under dynamic measurements, in Proc. of INFOCOM’17, pp. 1–9, 2017.
C. Wang, S. T. Maguluri, and T. Javidi Heavy traffic queue length behavior in switches with reconfiguration delay, in Proc. of INFOCOM’17, pp. 1–9, 2017.
G. Xie, K. Xie, J. Huang Wang X, Chen Y and Wen J. Fast low-rank matrix approximation with locality sensitive hashing for quick anomaly detection, in Proc. of INFOCOM’17, pp. 1–9, 2017.
Tatiana Mikhailovna Tatamikova and Oleg Ivanovich Kutuzov, “Evaluation and comparison of classical and fractal queuing systems”, XV International Symposium Problems of Redundancy in Information and Control Systems, pp.155 - 157, 2016.
Michaі Czarkowski, Sylwester Kaczmarek and Maciej Wolff, “Influence of Self -Similar Traffic Type on Perform ance of QoS Routing Algorithms’, INTL Journal of electronics and telecommunications, vol. 62, no. 1, pp. 81-87, 2016
Lakhmi Priya Das, Sanjay Kumar Patra and Sarojananda Mishra, “Impact of hurst parameter value in self-similarity behaviour of network traffic”, International Journal of Research in Computer and Communication Technology, 2016,Vol 5, No 12, pp.631-633.
Ушанев К.В. Имитационные модели системы массового обслуживания типа Pa/M/1, H2/M/1 и исследование на их основе качества обслуживания трафика со сложной структурой. Системы управления, связи и безопасности. 2015. №4. С.217-251.
Кучук Г. А, О., Можаєв О., Воробйов О. В. Метод прогнозування фрактального трафіка. Радіоелектронні і комп’ютерні системи. 2006, №6,.С. 181–188,. URL: http://nbuv.gov.ua/UJRN/recs_2006_6_34.
Кучук Г. А, Можаєв О. О., Воробйов О. В. Прогнозирование трафика для управления перегрузками интегрированной телекоммуникационной сети. Радіоелектронні і комп’ютерні системи. 2007, № 8. С. 261–271. URL: http://nbuv.gov.ua/UJRN/recs_2007_8_48.
Кучук Г. А., Можаєв О. О., Воробйов О. В. Аналіз та моделі самоподібного трафіка. Авиационно-космическая техника и технология. 2006, № 9. С. 173–180. URL: http://nbuv.gov.ua/UJRN/aktit_2006_9_35.
Smirnov A.A., Kuznetsov A.A., Danilenko D.A., Berezovsky A., «The statistical analysis of a network traffic for the intrusion detection and prevention systems», Telecommunications and Radio Engineering. – Volume 74, Issue 1. – Begel House Inc. – 2015. – Р. 61-78.
S mirnov, O., Kuznetsov, A., Kiian, A., Zamula, A., Rudenko, S., Hryhorenko, V., «Variance Analysis of Networks Traffic for Intrusion Detection in Smart Grids», 2019 IEEE 6th International Conference On Energy Smart Systems (2019 IEEE ESS), Kyiv, Ukraine April 17-19, 2019 P. 353-358.
Smirnov, O., Kuznetsov, A., Kavun, S., Babenko, B., Nakisko, O., Kuznetsova, K., «Malware Correlation Monitoring in Computer Networks of Promising Smart Grids», 2019 IEEE 6th International Conference On Energy Smart Systems (2019 IEEE ESS), Kyiv, Ukraine April 17-19, 2019 P. 347-352
Коваленко А. А., Кучук Г. А., Можаев А. А. Построение экспоненциальных временных шкал при анализе очередей мультисервисных сетей. Радіоелектронні і комп’ютерні системи. 2010, № 7. С. 257–262. URL: http://nbuv.gov.ua/UJRN/recs_2010_7_52.
Добровольский Е.В., Нечипорук О.Л. Моделирование сетевого трафика с использованием контекстных методов. Наукові праці ОНАЗ ім. О.С. Попова. 2005, № 1. С.24-32
Copyright (c) 2019 Г.М Дрєєва, О.А. Смірнов, О.М. Дрєєв, Т.В. Смірнова
Фрактальний аналіз генератора самоподібного трафіку на основі ланцюга Марков
Об авторах
Г.М Дрєєва, викладач, Центральноукраїнський національний технічний університет, м. Кропивницький, Україна
О.А. Смірнов, професор, доктор технічних наук, Центральноукраїнський національний технічний університет, м. Кропивницький, Україна
О.М. Дрєєв, кандидат технічних наук, Центральноукраїнський національний технічний університет, м. Кропивницький, Україна
Т.В. Смірнова, кандидат технічних наук, Центральноукраїнський національний технічний університет, м. Кропивницький, Україна
Анотація
Ключові слова
Посилання
1. Jan W. Kantelhardt Fractal and Multifractal Time Series Institute of Physics, Martin-Luther-University Halle-Wittenberg, 06099 Halle, Germany April 4, 2008 42 p. Retrieved from https://arxiv.org/pdf/0804.0747 [in English].
2. Fontugne, Romain and Abry, Patrice and Fukuda, Akira and Veitch, Darryl and Cho, Kenjiro and Borgnat, Pierre and Wendt, Herwig Scaling in Internet Traffic: a 14 year and 3 day longitudinal study, with multiscale analyses and randomprojections. (2017) IEEE/ACM Transactions on Networking journal, 25 (4). 2152-2165. ISSN 1063-6692. Retrieved from https://ieeexplore.ieee.org/document/7878657 [in English].
3. Lyudmyla Kirichenko, Tamara Radivilova, Vitalii Bulakh Machine Learning in Classification Time Series with Fractal Properties. December 2018. URL: https://www.researchgate.net/publication/ 329973801_Machine_Learning_in_Classification_Time_Series_with_Fractal_Properties [in English].
4. Aleksandrov, P.S.& Pasynkov, B.A. (1973). Vvedenie v teoriju razmernosti [Introduction to the theory of dimension]. Moskow: Science [in Russian].
5. Mackenzie Haffey; Martin Arlitt; Carey Williamson, Modeling, Analysis, and Characterization of Periodic Traffic on a Campus Edge Network. 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pр. 170 – 182, 2018. [in English].
6. Lai Simin, Wan Li, Zeng Xiangjian. (2019). Comparative Analysis of Multi-fractal Data Missing Processing Methods. Applied and Computational Mathematics.,Vol. 8, No. 2, 44-49. doi: 10.11648/j.acm.20190802.14 [in English].
7. Mahdi Barat Zadeh Joveini, Javad Sadri аnd Hoda Alavi Khoushhal. Fractal Modeling of Big Data Networks Conference: International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI 2018) At: Center for Pattern Recognition and Machine Intelligence (CENPARMI), Concordia University, Montreal, Canada, pp. 1-4, 2018. [in English].
8. D. Jiang, L. Huo & Y. Li. (2018). Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5) Doi.org/10.1371/journal.pone.0194302 [in English].
9. K. Xie, C. Peng, X. Wang, G. Xie & J. Wen (2017). Accurate recovery of internet traffic data under dynamic measurements, in Proc. of INFOCOM’17, pp. 1–9, 2017. [in English].
10. C. Wang, S. T. Maguluri, and T. Javidi Heavy traffic queue length behavior in switches with reconfiguration delay, in Proc. of INFOCOM’17, pp. 1–9, 2017. [in English].
11. G. Xie, K. Xie, J. Huang Wang X, Chen Y and Wen J. Fast low-rank matrix approximation with locality sensitive hashing for quick anomaly detection, in Proc. of INFOCOM’17, pp. 1–9, 2017. [in English].
12. Tatiana Mikhailovna Tatamikova and Oleg Ivanovich Kutuzov, “Evaluation and comparison of classical and fractal queuing systems”, XV International Symposium Problems of Redundancy in Information and Control Systems, pp.155 - 157, 2016. [in English].
13. Michaі Czarkowski, Sylwester Kaczmarek and Maciej Wolff, “Influence of Self -Similar Traffic Type on Perform ance of QoS Routing Algorithms’, INTL Journal of electronics and telecommunications, vol. 62, no. 1, pp. 81-87, 2016 [in English].
14. Lakhmi Priya Das, Sanjay Kumar Patra and Sarojananda Mishra, “Impact of hurst parameter value in self-similarity behaviour of network traffic”, International Journal of Research in Computer and Communication Technology, Vol 5, No 12, pp.631-633, 2016. [in English].
15. K.V. Ushanev, "Imagination models of the mass service system type Pa / M / 1, H2 / M / 1 and studying on their basis the quality of service of traffic with complex structure", Control systems, communication and security. №4, p.217-251, 2015. [in Russian].
16. Kuchuk, G.A., Mozhayev, O.O. & Vorobeyov, O.V. (2006). The method of prediction of fractal traffic. Radio and Computer Systems, No. 6, 181–188. Retrieved from http://nbuv.gov.ua/UJRN/recs_2006_6_34 [in Russian].
17. Kuchuk, G.A., Mozhayev, O.O. & Vorobeyov, O.V. (2007). Traffic prediction for congestion management integrated telecommunications network. Radio-electronic and computer systems, № 8, 261–271. Retrieved from http://nbuv.gov.ua/UJRN/recs_2007_8_48 [in Russian].
18. Kuchuk, G A., Mozhayev, O.O. & Vorobeyov, O.V. (2006). Analiz that model samoponіbnogo traffic. Aerospace and technology, No. 9, 173–180. Retrieved from http: //nbuv.gov.ua/UJRN/aktit_2006_9_35 [in Ukrainian].
19. Smirnov A.A., Kuznetsov A.A., Danilenko D.A.&, Berezovsky A. (2015). «The statistical analysis of a network traffic for the intrusion detection and prevention systems», Telecommunications and Radio Engineering, Vol,74, Issue 1. – Begel House Inc. Р. 61-78. [in English].
20. Smirnov, O., Kuznetsov, A., Kiian, A., Zamula, A., Rudenko, S., Hryhorenko, V., «Variance Analysis of Networks Traffic for Intrusion Detection in Smart Grids», 2019 IEEE 6th International Conference On Energy Smart Systems (2019 IEEE ESS), Kyiv, Ukraine April 17-19, 2019 P. 353-358. [in English].
21. Smirnov, O., Kuznetsov, A., Kavun, S., Babenko, B., Nakisko, O., Kuznetsova, K. (2019). «Malware Correlation Monitoring in Computer Networks of Promising Smart Grids», 2019 IEEE 6th International Conference On Energy Smart Systems (2019 IEEE ESS), Kyiv, Ukraine April 17-19, 2019 P. 347-352 [in English].
22. Kovalenko, A.A., Kuchuk, G. A. & Mozhaev, A. A. (2010). Construction of exponential time scales in the analysis of multiservice network queues. Radio and Computer Systems. No. 7, 257–262. Retrieved from http://nbuv.gov.ua/UJRN/recs_2010_7_52 [in Russian].
23. Dobrovolsky, E.V. & Nechyporuk. O.L. (2005). Modeling of Network Traffic Using Context Methods Scientific Papers ONAS them. O.S. Popova, No. 1, 24-32 [in Russian].
Пристатейна бібліографія ГОСТ
Copyright (c) 2019 Г.М Дрєєва, О.А. Смірнов, О.М. Дрєєв, Т.В. Смірнова