DOI: https://doi.org/10.32515/2664-262X.2024.9(40).1.64-74

Impact of increasing regulatory requirements on the level of thermal reliability and heat loss through walls and roofs of residential and public buildings

Victor Pashynskyi, Vladyslav Nastoyaschiy, Mykola Pashynskyi, Dmytro Bohatyrov

About the Authors

Victor Pashynskyi, Professor, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: pva.kntu@gmail.com, ORCID ID: 0000-0002-5474-6399

Vladyslav Nastoyaschiy, Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: vanast52@ukr.net, ORCID ID: 0000-0002-8931-5097

Mykola Pashynskyi, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0002-2669-523X

Dmytro Bohatyrov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: asbdv@ukr.net, ORCID ID: 0000-0002-8997-5466

Abstract

New edition of the State Building Regulations of Ukraine DBN V.2.6-31:2021 "Thermal insulation and energy efficiency of buildings" significantly increases the requirements for heat transfer resistance of walls and coatings of civil buildings. This study was carried out with the aim of evaluating the impact of the increased requirements of DBN V.2.6-31:2021 on the energy efficiency and comfort of buildings by comparing the thermal reliability characteristics of walls and roofs of civil buildings in different regions of Ukraine. The walls and combined roofs of residential and non-residential public buildings were analysed, the requirements for which in DBN B.2.6-31:2016 and DBN B.2.6-31:2021 differ in the minimum permissible value of heat transfer resistance, but coincide in other indicators. Climate conditions for the operation of buildings are reflected by data on atmospheric air temperature at 57 weather stations of Ukraine, which are given in DSTU-N B V.1.1–27:2010. The comparison of the same type of enclosing structures is made according to the criteria of reducing annual heat losses due to the enclosing and the probable duration of thermal failures. Annual heat losses in the set of each of the 57 weather stations are calculated according to the known dependencies of thermal physics. The durations of thermal failures of enclosures according to the comfort criterion are determined by the probabilistic method previously developed by the authors, which takes into account random fluctuations in the temperature of the external atmospheric and internal air in the room, as well as the random character of the heat transfer resistance of the enclosures. The probable duration of thermal failures of enclosing structures according to the comfort criterion, depending on the permissible temperature difference of the internal air and the inner surface of the enclosing structure, established in DBN B.2.6-31, can differ by two orders of magnitude. This indicator should be used only to compare the level of thermal reliability of enclosures with the same values of the permissible temperature difference. The increase in the heat transfer resistance of walls and roofs of residential and public buildings implemented in DBN V.2.6-31:2021 led to a decrease in heat loss by an average of 17%, a decrease in the probable duration of thermal failure of walls according to the comfort criterion by 17%, and combined roofs by 54 %.

Keywords

residential and public buildings, walls, roofs, heat loss, the duration of the thermal failure

Full Text:

PDF

References

1. DBN V.2.6-31:2021 : Teplova izoliatsiia ta enerhoefektyvnist' budivel' [Thermal insulation and energy efficiency of buildings]. Kyiv : Ministerstvo rozvytku hromad ta terytorij Ukrainy [in Ukrainian].

2. DBN V.2.6-31:2016 : Teplova izoliatsiia budivel' [Thermal insulation of buildings] from April 1, 2017. Kyiv : Ministerstvo budivnytstva Ukrainy [in Ukrainian].

3. DSTU 9191:2022: Teploizoliatsiia budivel'. Metod vyboru teploizoliatsijnoho materialu dlia uteplennia budivel' [Thermal insulation of buildings. The method of choosing heat-insulating material for building insulation]. DP «UkrNDNTs» [in Ukrainian].

4. Pashyns'kyj, V.A., Karpushyn, S.O.  Kariuk, A.M. (2017). Dotsil'ni znachennia oporu teploperedachi ohorodzhen' tsyvil'nykh budivel' v umovakh Ukrainy [Appropriate values of the heat transfer resistance of the enclosures of civil buildings in the conditions of Ukraine]. Novi tekhnolohii v budivnytstvi: Naukovo-tekhnichnyj zhurnal – New technologies in construction: Scientific and technical journal, 33, 76-80 [in Ukrainian].

5. Fertelli, A. (2013): Determination of optimum insulation thickness for different building walls in Turkey. Transactions of FAMENA, 37 (2), 103-113 [in English].

6. Scartezzini Jean-Louis, DUMAN Öykü, Koca Aliihsan, Acet Ruşen, ÇETIN Mevlüt, Gemici Zafer. A study on optimum insulation thickness in walls and energy savings based on degree day approach for 3 different demo-sites in Europe. In Proceedings of International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, 2015, September 9-11th, Lausanne: LESO-PB, EPFL, 2015. P. 155-160 [in English].

7. KAYNAKLI, Ömer & Kaynakli, Faruk. (2016). Determination Of Optimum Thermal Insulation Thicknesses For External Walls Considering The Heating, Cooling And Annual Energy Requirements. Uludağ University Journal of The Faculty of Engineering, 21, 227-241 [in English].

8. NALBANT Önder. Türkiye has introduced a new building code to impose energy efficiency. Retrieved from https://www.linkedin.com/pulse/t%C3%BCrkiye-has-introduced-new-building-code-impose-energy-%C3%B6nder-nalbant [in English].

9. Maliarenko, V.A., Herasymova, O.M.  Malieiev, O.I. (2007). Budivel'na teplofizyka [Thermal physics]. Kharkiv: KHNAMH. Retrieved from https://core.ac.uk/download/pdf/11314464.pdf [in Ukrainian].

10. DSTU-N B V.1.1–27:2010: Zakhyst vid nebezpechnykh heolohichnykh protsesiv, shkidlyvykh ekspluatatsijnykh vplyviv, vid pozhezhi. Budivel'na klimatolohiia [Protection against dangerous geological processes, harmful operational influences, and against fire. Building climatology]. Kyiv: Ministerstvo rehional'noho rozvytku ta budivnytstva Ukrainy [in Ukrainian].

11. Pashyns'kyj, V.A., Pushkar, N.V. & Kariuk, A.M. (2012). Temperaturni vplyvy na ohorodzhuval'ni konstruktsii budivel' [Temperature effects on the enclosing structures of buildings]. Odesa : ODABA [in Ukrainian].

12. Pashyns'kyj, V.A., Dzhyrma, S.O. & Plotnikov, O.A. (2017). Vybir pokaznykiv teplovoi nadijnosti ohorodzhuval'nykh konstruktsij [Selection of indicators of thermal reliability of enclosing structures]. Suchasni tekhnolohii ta metody rozrakhunkiv u budivnytstvi : Zbirnyk naukovykh prats'  Collection of scientific papers, 7, 194-200 [in Ukrainian].

13. Kariuk A., Pashynskyi V., Pashynskyi M., Mammadova F (2022). Methods of Probabilistic Assessment of Building Enclosing Structures Thermal Reliability. Proceedings of the 3rd International Conference on Building Innovations. Lecture Notes in Civil Engineering. Springer, Cham. Vol 181. Р.179-189. Retrieved from URL: https://doi.org/10.1007/978-3-030-85043-2_18 [in English].

14. Pashynskyi V.A., Pashynskyi M.V., Nastoyashchiy V.A., Skrynnyk I.O (2023). Statistical characteristics of wall temperature for assessing thermal reliability and energy efficiency of residential buildings. Modern engineering and innovative technologies, 26, 2. 19-25. Retrieved from https://doi.org/10.30890/2567-5273 [in English].

15. Shul'hin, V. V. & Kariuk, A. M. (2013). Imovirnisne podannia tekhnichnykh kharakterystyk teploizoliatsijnykh materialiv [Probabilistic presentation of technical characteristics of heat-insulating materials]. Zbirnyk naukovykh prats' (haluzeve mashynobuduvannia, budivnytstvo) [A collection of scientific papers (industry mechanical engineering, construction)], 4 (39), 257-262 [in Ukrainian].

16. Leshchenko, M. V., & Semko, V. (2015). Thermal characteristics of the external walling made of cold-formed steel studs and polystyrene concrete. Magazine of Civil Engineering, 60(8), 44-55. Retrieved from https://doi.org/10.5862/MCE.60.6 [in English].

Citations

1. ДБН В.2.6-31:2021 : Теплова ізоляція та енергоефективність будівель. Київ : Міністерство розвитку громад та територій України. 2022. 23 с.

2. ДБН В.2.6-31:2016 : Теплова ізоляція будівель – [Чинний від 2017-04-01]. Київ : Міністерство будівництва України. 2016. 31 с.

3. ДСТУ 9191:2022: Теплоізоляція будівель. Метод вибору теплоізоляційного матеріалу для утеплення будівель. ДП «УкрНДНЦ». 2023. 60 c.

4. Пашинський В.А., Карпушин С.О., Карюк А.М. Доцільні значення опору теплопередачі огороджень цивільних будівель в умовах України. Нові технології в будівництві: Науково-технічний журнал. 2017. № 33. С. 76–80.

5. Fertelli A. Determination of optimum insulation thickness for different building walls in Turkey. Transactions of FAMENA. 2013. Vol. 37 (2). P. 103-113.

6. Scartezzini Jean-Louis, DUMAN Öykü, Koca Aliihsan, Acet Ruşen, ÇETIN Mevlüt, Gemici Zafer. A study on optimum insulation thickness in walls and energy savings based on degree day approach for 3 different demo-sites in Europe. In Proceedings of International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, 2015, September 9-11th, Lausanne: LESO-PB, EPFL, 2015. P. 155-160.

7. KAYNAKLI Ömer, Kaynakli Faruk. Determination Of Optimum Thermal Insulation Thicknesses For External Walls Considering The Heating, Cooling And Annual Energy Requirements. Uludağ University Journal of The Faculty of Engineering. 2016. Vol. 21. P. 227-241.

8. NALBANT Önder. Türkiye has introduced a new building code to impose energy efficiency. URL: https://www.linkedin.com/pulse/t%C3%BCrkiye-has-introduced-new-building-code-impose-energy-%C3%B6nder-nalbant (дата звернення: 26.01.2024).

9. Маляренко В.А., Герасимова О.М., Малєєв О.І. Будівельна теплофізика. Курс лекцій для студентів усіх форм навчання будівельних спеціальностей. Харків: ХНАМГ, 2007. 99 с. URL: https://core.ac.uk/download/pdf/11314464.pdf (дата звернення: 26.01.2024).

10. ДСТУ-Н Б В.1.1–27:2010 : Захист від небезпечних геологічних процесів, шкідливих експлуатаційних впливів, від пожежі. Будівельна кліматологія. Київ, Міністерство регіонального розвитку та будівництва України, 2010. 123 с.

11. Пашинський В.А., Пушкар Н.В., Карюк А.М. Температурні впливи на огороджувальні конструкції будівель. Одеса : ОДАБА, 2012. 180 с.

12. Пашинський В.А., Джирма С.О., Плотніков О.А. Вибір показників теплової надійності огороджувальних конструкцій. Сучасні технології та методи розрахунків у будівництві : Збірник наукових праць. 2017. Вип. 7. С. 194-200.

13. Kariuk A., Pashynskyi V., Pashynskyi M., Mammadova F. Methods of Probabilistic Assessment of Building Enclosing Structures Thermal Reliability. Proceedings of the 3rd International Conference on Building Innovations. Lecture Notes in Civil Engineering. Springer, Cham. 2022. Vol. 181. Р.179-189. URL: https://doi.org/10.1007/978-3-030-85043-2_18 (дата звернення: 26.01.2024).

14. Pashynskyi V.A., Pashynskyi M.V., Nastoyashchiy V.A., Skrynnyk I.O. Statistical characteristics of wall temperature for assessing thermal reliability and energy efficiency of residential buildings. Modern engineering and innovative technologies. 2023. Issue 26 part 2. P. 19-25. URL: https://doi.org/10.30890/2567-5273 (дата звернення: 26.01.2024).

15. Шульгін В. В., Карюк А. М. Імовірнісне подання технічних характеристик теплоізоляційних матеріалів. Збірник наукових праць (галузеве машинобудування, будівництво). 2013. Вип. 4(39). С. 257-262.

16. Leshchenko, M. V., & Semko, V. (2015). Thermal characteristics of the external walling made of cold-formed steel studs and polystyrene concrete. Magazine of Civil Engineering. 2015. Vol. 60(8). P. 44-55. URL: https://doi.org/10.5862/MCE.60.6 (дата звернення: 26.01.2024).

Copyright (c) 2024 Victor Pashynskyi, Vladyslav Nastoyaschiy, Mykola Pashynskyi, Dmytro Bohatyrov