DOI: https://doi.org/10.32515/2664-262X.2024.9(40).1.43-54

Development of a Digital Control Interface for a Switching Power Supply

Oleksandr Baraniuk, Viktor Kalich

About the Authors

Oleksandr Baraniuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine, e-mail: baranyuk60@gmail.com, ORCID ID: 0000-0003-1151-0092

Viktor Kalich, Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, vmk041954@gmail.com, ORCID ID: 0000-0002-9907-5496

Abstract

Most switching power supplies are not designed to change their output voltage. However, situations arise where a different voltage from the power source is needed. The purpose of this article is to develop a practical interface scheme for digitally controlling the output voltage of a switching power supply with an analog feedback loop. The article presents the results of the research of isolated flyback switch-mode power supply (SMPS) circuits, determines the method of controlling the output voltage of the SMPS, and proposes a digital interface for controlling the output voltage of the power supply. The emphasis was on using readily available, inexpensive components with minimal modification to the existing design. The study revealed limitations in existing switching power supply designs regarding effective output voltage control. Modifying the internal reference source is often not an available option. Therefore, influencing the feedback circuit emerges as a simple and viable control method. All power supply feedback loops include a voltage divider measuring the output voltage of switching power supply. This research demonstrates that controlling output voltage can be achieved by injecting or draining current within or from output voltage divider of power supply. Draining current increases the output voltage, while injecting decreases it. The additional resistor only requires a single connection point within the existing circuit. The proposed method provides a linear dependence of the output voltage increase on the value of the injected/drained current. It is shown that the digital interface scheme depends on the number of discrete levels of the required output voltage. For a small number of levels, field-effect transistors controlled by a positional or binary code can be used to control the power supply, and with a significant number of levels, it is advisable to use ready-made digital-to-analog converters.

Keywords

switching power supply, control, interface, feedback, digital code

Full Text:

PDF

References

1. Horowitz, P. & Hill, W. (2015). The Art of Electronics. (3rd ed.). New York: Cambridge University Press.

2. Monolithic Power Systems. (2023). An Introduction to Flyback Converters: Parameters, Topology, and Controllers. MPS. Retrieved from: https://www.monolithicpower.com/en/an-introduction-to-flyback-converters-parameters-topology-and-controllers

3. ON Semiconductor (2014). Switch-Mode Power Supply. Reference Manual. Denver: SCILLC.

4. Turcan G. (2016). Flyback SMPS Using a Microcontroller as Control Unit. AN2122. Chandler: Microchip Technology.

5. Betten, J. (2024). Flyback converter design considerations. Dallas: Texas Instruments.

6. Verma, S., Singh, S.K. & Rao, A.G. (2013). Overview of control Techniques for DC-DC converters. Research Journal of Engineering Sciences. 2(8), 18–21.

7. Mahdavikhah, B &, Prodić, A.A. (2014). Digitally Controlled DCM Flyback Converter With a Low-Volume Dual-Mode Soft Switching Circuit. 2014 IEEE Applied Power Electronics Conference and Exposition – APEC 2014. Fort Worth, 63–68. DOI: 10.1109/APEC.2014.6803290.

8. Texas Instruments (2023). TL431, TL432 Precision Programmable Reference. Dallas: Texas Instruments.

9. Zamora, M. (2018). Designing with the ATL431LI in Flyback Converters. Dallas: Texas Instruments.

10. Polishchuk M.M., Hryniuk S.V., Bilous M.V. (2018). Laboratornyi blok zhyvlennia na bazi mikrokontrolera STM32F103VET6 [Laboratory power supply based on STM32F103VET6 microcontroller]. Komp'iuterno-intehrovani tekhnolohii: osvita, nauka, vyrobnytstvo  Computer-integrated technologies: education, science, production, 30–31, 251–256 [in Ukrainian].

11. Yurko, O.O., Mos'pan, D.V. & Kukharenko, D.V. (2023). Blok zhyvlennia z prohramnym keruvanniam [Power supply unit with software control]. Vyklyky ta problemy suchasnoi nauky : zb. nauk. pr.  Challenges and problems of modern science: coll. of science Ave, 1, 294–298. DOI: 10.6084/m9.figshare.22886720 [in Ukrainian].

12. Derkach, M.V. & Yer'omenko, A.Yu. (2022). Tsyfrovyj blok keruvannia impul'snymy dzherelamy zhyvlennia na osnovi mikrokontrolera STM32G474RET6 [Digital control unit for switching power supplies based on the STM32G474RET6 microcontroller]. Visnyk Natsional'noho tekhnichnoho universytetu "KhPI"  Bulletin of the National Technical University "KhPI", 1–2 (7–8), 65–77. DOI: 10.20998/2411-0558.2022.02.07 [in Ukrainian].

13. Viswanatha V., Reddy R.V.S. (2017). Digital Control of Buck Converter Using Arduino Microcontroller for Low Power Applications. International Conference On Smart Technologies For Smart Nation (SmartTechCon). Bengaluru, India. 439–443. DOI: 10.1109/SmartTechCon.2017.8358412.

14. Texas Instruments (2016). How to Dynamically Adjust Power Module Output Voltage. Application Report SLVA861. Dallas: Texas Instruments.

15. Satterfield G. (2018). Programmable low-side current sink circuit. SLAA868. Dallas: Texas Instruments.

16. Texas Instruments (2019). Replacing Digital Potentiometers with Precision DACs. Dallas: TI.

Citations

1. Horowitz P., Hill W. The Art of Electronics. 3rd ed. New York: Cambridge University Press, 2015. 1220 p.

2. An Introduction to Flyback Converters: Parameters, Topology, and Controllers. Monolithic Power Systems. 2023. 7 p. URL: https://www.monolithicpower.com/en/an-introduction-to-flyback-converters-parameters-topology-and-controllers

3. Switch-Mode Power Supply. Reference Manual. Denver : ON Semiconductor, 2014. 72 p.

4. Turcan G. Flyback SMPS Using a Microcontroller as Control Unit. Microchip Technology, 2016. 72 p.

5. Betten J. Flyback converter design considerations. Dallas: Texas Instruments, 2024. 4 p.

6. Verma S., Singh S.K., Rao A.G. Overview of control Techniques for DC-DC converters. Research Journal of Engineering Sciences, 2013. Vol. 2, No. 8. P. 18–21.

7. Mahdavikhah B., Prodić A. A Digitally Controlled DCM Flyback Converter With a Low-Volume Dual-Mode Soft Switching Circuit. 2014 IEEE Applied Power Electronics Conference and Exposition – APEC 2014. Fort Worth, 2014. P. 63–68. DOI: 10.1109/APEC.2014.6803290.

8. TL431, TL432 Precision Programmable Reference. Dallas: Texas Instruments, 2023. 84 p.

9. Zamora M. Designing with the ATL431LI in Flyback Converters. Dallas : Texas Instruments, 2018. 7 p,

10. Поліщук М.М., Гринюк С.В., Білоус М.В. Лабораторний блок живлення на базі мікроконтролера STM32F103VET6. Комп’ютерно-інтегровані технології: освіта, наука, виробництво. 2018. Вип. № 30–31. С. 251–256.

11. Юрко О.О., Мосьпан Д.В., Кухаренко Д.В. Блок живлення з програмним керуванням. Виклики та проблеми сучасної науки : зб. наук. пр. 2023. Т. 1. С. 294–298. DOI: 10.6084/ m9.figshare.22886720.

12. Деркач М.В., Єрьоменко А.Ю. Цифровий блок керування імпульсними джерелами живлення на основі мікроконтролера STM32G474RET6. Вісник Національного технічного університету "ХПІ", 2022. № 1–2 (7–8). С. 65–77. DOI: 10.20998/2411-0558.2022.02.07.

13. Viswanatha V., Reddy R.V.S., Digital Control of Buck Converter Using Arduino Microcontroller for Low Power Applications. 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), Bengaluru, India, 2017. P. 439–443, DOI: 10.1109/SmartTechCon.2017.8358412.

14. How to Dynamically Adjust Power Module Output Voltage. Application Report SLVA861. Dallas: Texas Instruments, 2016. 5 p.

15. Satterfield G. Programmable low-side current sink circuit. SLAA868. Dallas: Texas Instruments, 2018. 6 p.

16. Replacing Digital Potentiometers with Precision DACs. Dallas: Texas Instruments, 2019. 4 p.

Copyright (c) 2024 Oleksandr Baraniuk, Viktor Kalich