DOI: https://doi.org/10.32515/2664-262X.2023.8(39).2.35-40

Dependence of the structure of electric arc coatings on the parameters of sputtering of parts of transport equipment

Mykhajlo Student, Sergiy Markovych, Khrystyna Zadopozna, Volodymyr Hvozdetskii

About the Authors

Mykhajlo Student, Leading Researcher , Professor, Doctor in Technics (Doctor of Technic Sciences), Karpenko Physico-Mechanical Institute of NAS of Ukraine,, e-mail: student.phmi@gmail.com, ORCID ID: 0000-0002-5992-5898

Sergiy Markovych, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropivnitskiy, Ukraine, e-mail: marko60@ukr.net, ORCID ID: 0000-0003-1393-2360

Khrystyna Zadopozna, Research, PhD in Technics (Candidate of Technics Sciences), Karpenko Physico-Mechanical Institute of NAS of Ukraine,, e-mail: 880988@ukr.net, ORCID ID: 0000-0002-1310-6467

Volodymyr Hvozdetskii, Senior Research, PhD in Technics (Candidate of Technics Sciences), Karpenko Physico-Mechanical Institute of NAS of Ukraine, Lviv, Ukraine, e-mail: gvosdetcki@gmail.com

Abstract

The use of special flux-cored wires for electric arc spraying allows for coatings with high wear resistance. However, the insufficient adhesion and cohesion of the resulting coatings does not allow these coatings to be used under increased operating loads. To improve the mechanical characteristics of gas-thermal coatings, a supersonic gas jet is used to transport molten droplets to the sprayed surface, increasing their kinetic energy. It is proposed to apply a supersonic air jet using a Laval nozzle and increasing the air jet pressure from 0.6 to 1.0...1.2 MPa. The aim of the study is to determine the effect of air jet pressure on the structure of electric arc coatings. It has been determined that an increase in the air jet pressure from 0.6 to 1.2 MPa causes a 2-fold increase in the air flow velocity from 300 to 600 m/s. At the same time, the velocity of droplets dispersed by the air jet during the spraying of electrode cored wires increases from 60-90 m/s to 160-220 m/s, and their size decreases. Reducing the flight time of the dispersed droplets from the arc to the sprayed surface ensures their higher temperature when they hit the sprayed surface. Increasing the air jet pressure also reduces the expansion angle of the metal-air jet from 30° to 15°. The microhardness of iron oxide inclusions - magnetite, wustite and hematite - in the coating of unalloyed steel wire sputtered is in the range of 700-800 HV. This ensures a microhardness of the U8 coating of 350-400 HV at a pressure of 0.6 MPa. Sputtering the same coating at a pressure of 1.2 MPa reduces the size of the lamellae and oxides, and their volume content increases, which increases the microhardness to 450...500 HV. The microhardness of coatings made of 90X17R3GS increases from 800 to 910 HV. It was found that an increase in air jet pressure from 0.6 to 1.2 MPa provides an increase in air jet velocity from 300 to 600 m/s, and the velocity of dispersed droplets from 120 to 220 m/s.

Keywords

structure, sputtering, Laval nozzle, jet speed, microhardness, detail, transport equipment

Full Text:

PDF

References

1. Wielage, B. et al. Iron-based coatings arc-sprayed with cored wires for applications at elevated temperatures (2013). Surface and coating technology, No.220, 27–35 [in English].

2. Student, M.M. et al. (2022). Abrasive Wear Resistance and Tribological Characteristics of Electrometallized Composite Coatings. Materials Science, 58(1), 96–104 [in English].

3. Student, M. M., Pokhmurs'ka, H. V., Hvozdets'kyj, V. M. et al. (2018). Bahatofunktsional'ni elektroduhovi pokryttia [Multifunctional electric arc coatings]. Lviv : Prostir-M [in Ukrainian].

4. Pokhmurskyi, V.I. et al. (2013). Arc-sprayed iron-based coatings for erosion-corrosion protection of boiler tubes at elevated temperatures. Journal of Thermal Spray Technology, Vol.22, P. 34-41[in English].

5. Student, M.M. et al. (2020). Vplyv diametra elektrodnykh poroshkovykh drotiv na mekhanichni kharakterystyky elektroduhovykh pokryttiv [The effect of the diameter of the electrode flux-cored wires on the mechanical characteristics of electric arc coatings]. Tsentral'noukrains'kyj naukovyj visnyk. Tekhnichni nauky - Central Ukrainian scientific bulletin. Technical sciences, 3(34), 32-44 [in Ukrainian].

6. Stupnyts’kyi, T.R. et al. (2016). Optimization of the Chromium Content of Powder Wires of the Fe–Cr–C and Fe–Cr–B Systems According to the Corrosion Resistance of Electric-Arc Coatings. Materials Science, Vol. 52, No. 2, P. 165–172 [in English].

7. Student, M. et al. (2022). Mechanical Properties of Arc Coatings Sprayed with Cored Wires with Different Charge Compositions. Coatings, 12(7), 925 [in English].

8. Student, M.M. et al. (2022). Abrazyvna znosostijkist' ta trybolohichni kharakterystyky elektrometalizatsijnykh kompozytsijnykh pokryttiv [Abrasive wear resistance and tribological characteristics of electrometallization composite coatings]. Fizyko-khimichna mekhanika materialiv – Physicochemical Mechanics of Materials, 1, 90-97 [in Ukrainian].

Citations

1. Iron-based coatings arc-sprayed with cored wires for applications at elevated temperatures / Wielage B. et al. Surface and coating technology. 2013. № 220. P. 27–35.

2. Abrasive Wear Resistance and Tribological Characteristics of Electrometallized Composite Coatings / Student, M.M. et al. Materials Science. 2022. 58(1). P. 96–104.

3. Багатофункціональні електродугові покриття : монографія / М. М. Студент та ін. - Львів : Простір-М, 2018. 335 с.

4. Arc-sprayed iron-based coatings for erosion-corrosion protection of boiler tubes at elevated temperatures / Pokhmurskyi V. I. et al. Journal of Thermal Spray Technology. 2013. Vol. 22. P. 34-41.

5. Вплив діаметра електродних порошкових дротів на механічні характеристики електродугових покриттів / Студент М.М. та ін. Центральноукраїнський науковий вісник. Технічні науки. 2020. Вип. 3(34). С. 32-44.

6. Optimization of the Chromium Content of Powder Wires of the Fe–Cr–C and Fe–Cr–B Systems According to the Corrosion Resistance of Electric-Arc Coatings / Stupnyts’kyi T.R. et al. Materials Science. 2016. Vol. 52, № 2. Р. 165–172.

7. Mechanical Properties of Arc Coatings Sprayed with Cored Wires with Different Charge Compositions / Student M. et al. Coatings. 2022. №12(7). 925.

8. Абразивна зносостійкість та трибологічні характеристики електрометалізаційних композиційних покриттів / М.М. Студент та ін. Фізико-хімічна механіка матеріалів. 2022. № 1. C. 90-97.

Copyright (c) 2023 Mykhajlo Student, Sergiy Markovych, Khrystyna Zadopozna, Volodymyr Hvozdetskii