DOI: https://doi.org/10.32515/2664-262X.2023.8(39).2.11-23

Searching for optimal parameters of finishing antifriction non-abrasive treatment of cylinder liners of motor tractor engines

Ihor Shepelenko, Mykhailo Chernovol, Serhii Leshchenko, Michael Krasota, Yakiv Nemyrovskyi, Volodymyr Shumliakivsky

About the Authors

Ihor Shepelenko, Professor, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kntucpfzk@gmail.com, ORCID ID: 0000-0003-1251-1687

Mykhailo Chernovol, Academician of the National Academy of Agrarian Sciences of Ukraine, Professor, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: mchernovol50@gmail.com , ORCID ID: 0000-0003-3048-6833

Serhii Leshchenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: serafsgm@ukr.net, ORCID ID: 0000-0001-9339-4691

Michael Krasota, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: krasotamv@ukr.net, ORCID ID: 0000-0001-8791-3264

Yakiv Nemyrovskyi, Professor, Doctor in Technics (Doctor of Technic Sciences), Zhytomyr Polytechnic State University, Zhytomyr, Ukraine, ORCID ID: 0000-0001-8005-8584

Volodymyr Shumliakivsky, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Zhytomyr Polytechnic State University, Zhytomyr, Ukraine, e-mail: shumliakivskyiv@ztu.edu.ua , ORCID ID: 0000-0002-1665-7686

Abstract

This paper presents the results of research aimed at improving the quality of antifriction coatings obtained by finishing antifriction non-abrasive treatment (FANT). It has been previously established that the formation of an antifriction coating during FANT largely depends on the technological parameters that determine the conditions of contact between the tool and the surface being treated. The study of the peculiarities of surface contact, their regularities, as well as the main parameters of the FANT process, makes it possible to improve the quality of the antifriction coating, and therefore the operational properties of the part. The aim of the presented research is to evaluate the influence of technological factors of the FANT process on the quality of antifriction coatings and to obtain their rational values. The indicators of the quality of the antifriction coating are its continuity, surface roughness and mass transfer of the antifriction material. The optimisation parameters are the main modes of FANT and the geometrical characteristics of the initial surface to be treated. To determine the influence of the selected factors on the indicators characterising the quality of the antifriction coating, a central composite plan matrix was implemented, which allowed us to obtain mathematical models of the influence of factors on the adopted response functions. The processing of the experimental data was carried out using the STATISTICA 12.0 software package. As a result of the multifactorial experiment, statistical models were obtained that allow assessing the impact of the studied factors on the optimisation criteria. The significance of the obtained coefficients was checked using the Student's criterion, and the adequacy of the obtained equations was checked using the Fisher's criterion. A detailed analysis of the Pareto map and tabular results of the experiment allowed to establish the influence of the research factors on the optimisation criteria. The obtained mathematical models made it possible to determine the optimal combination of technological factors that ensure the quality of the coating, as well as to establish the rational values of FANT modes and geometric characteristics of the output surface.

Keywords

antifriction coating, cylinder liners, automotive and tractor engines, coating quality, multicriteria optimisation, technological parameters, geometric characteristics of the surface

Full Text:

PDF

References

1. Schepetov, V.V., Kharchenko, O.V. & Kharchenko, S.D. (2022). Znosostijki zakhysni pokryttia [Wear-resistant protective coatings]. Naukova dumka [in Ukrainian].

2. Nemyrovskyi, Y., Shepelenko, I. & Medvedieva, O. (2020). Improving the Durability of Agricultural Machinery Parts by Applying Antifriction Coatings. Acta Scientific Agriculture, Vol. 4, No 5. P. 46–57. https://actascientific.com/ASAG/ASAG-04-0840.php [in English].

3. Shepelenko, I., Posviatenko, E., & Cherkun, V. (2019). The mechanism of formation of anti-friction coatings by employing friction-mechanical method. Problems of Tribology, 24(1/91), 35–39. https://doi.org/10.31891/2079-1372-2019-91-1-35-39 [in English].

4. Chernovol, Mykhailo, Shepelenko, Igor & Budar Mohamed R.F. (2015). Effectiveness increase in application of FANT of the components of mobile agricultural machines. Zahalnoderzhavnyi mizhvidomchyi naukovo-tekhnichnyi zbirnyk «Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia silskohospodarskykh mashyn». 45(1), 10-13. https://dspace.kntu.kr.ua/handle/123456789/2128 [in English].

5. Solovykh, Ye.K. (2013). Naukovo-metodolohichni osnovy pidvyschennia nesuchoi zdatnosti funktsional'nykh pokryttiv konstruktyvnymy ta tekhnolohichnymy metodamy [Scientific and methodological bases of increasing the bearing capacity of functional coatings by constructive and technological methods]. Extended abstract of a doctoral thesis. Kyiv [in Ukrainian].

6. Abdullah Rasheed A., Shepelenko, Ihor & Posviatyenko, Eduard (2020). Experimental quality improvement of the application of antifriction coating. First International Conference on Advances in Physical Sciences and Materials 13-14 August 2020, Coimbatore, India. Journal of Physics: Conference Series, Vol. 1706. рр.1–11. https://iopscience.iop.org/article/10.1088/1742-6596/1706/1/012187 [in English].

7. Shepelenko, I., Tsekhanov, Y., Nemyrovskyi, Y. & Posviatenko, E. (2020). Improving the Efficiency of Antifriction Coatings by Means of Finishing the Antifriction Non-abrasive Treatment. In: Tonkonogyi, V., et al. Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-40724-7_30 [in English].

8. Shepelenko, I. et al. Modeling of contact interaction of microroughnesses of treated surfaces during finishing anti-friction non-abrasive treatment FANT. Mechatronic Systems 2. Routledge, 2021. 237–246. https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/37245/106488.pdf?sequence=2&isAllowed=y [in English].

9. Shepelenko, I.V. et al. (2022). Zmina shorstkosti poverkhni pry nanesenni antyfryktsiinykh pokryttiv [Changes in surface roughness when applying anti-friction coatings]. Zahalnoderzhavnyi mizhvidomchyi naukovo-tekhnichnyi zbirnyk «Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia silskohospodarskykh mashyn», 52, 156–165. http://zbirniksgm.kntu.kr.ua/pdf/52/18.pdf [in Ukrainian].

10. Sun, H., Tan, W., Ruan, Y. et al. (2023). Surface roughness classification using light scattering matrix and deep learning. Sci. China Technol. Sci. https://doi.org/10.1007/s11431-023-2545-8 [in English].

11. Shepelenko, I.V. (2021). Naukovi osnovy tekhnolohii nanesennia antyfryktsijnykh pokryttiv z vykorystanniam plastychnoho deformuvannia [Scientific basis of the technology of applying antifriction coatings using plastic deformation]. Extended abstract of a doctoral thesis. Kyiv [in Ukrainian].

12. Shepelenko, I. (2021). Technological factors influence on the antifriction coatings quality. Problems of Tribology, 26(2/100), 50–57. https://doi.org/10.31891/2079-1372-2021-100-2-50-57 [in English].

13. Shepelenko, I. (2020). The study of surface roughness in the process of finishing anti-friction non-abrasive treatment. Problems of Tribology, 25(1/95), 34–40. https://doi.org/10.31891/2079-1372-2020-95-1-34-40 [in English].

14. Shepelenko, I., Nemyrovskyi, Y., Stepchyn, Y., Mahopets, S. & Melnyk, O. (2024). Creation of a Combined Technology for Processing Parts Based on the Application of an Antifriction Coating and Deforming Broaching. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-42778-7_19 [in English].

15. Shepelenko, I.V., Tsekhanov, Yu.O. & Nemyrovs'kyj, Ya.B. (2020). Doslidzhennia mikrorizannia v protsesi finishnoi antyfryktsijnoi bezabrazyvnoi obrobky [Investigation of microneedling in the process of antifriction finishing without abrasive treatment]. Progressive technologies in mechanical engineering - 2020: IX Mizhnarodna naukovo-tekhnichna konferentsiia (3 – 7 liutoho 2020 r.) - IX International scientific and technical conference (pp.162–164). Lviv: Plai [in Ukrainian].

16. Shepelenko, I., Tsekhanov, Yu., Nemyrovskyi, Ya., Posvyatenko, E. & Eremin, P. (2019). Simulation of micro-cutting in the process of finishing anti-friction non-abrasive treatment. Ukrainian Journal of Mechanical Engineering and Materials Science, 5, 2, 43-52. https://doi.org/10.23939/ujmems2019.02.043 [in English].

17. Shepelenko, I.V., Nemyrovs'kyj, Ya.B. & Posviatenko, E.K. (2022). Pidvyschennia iakosti antyfryktsijnykh pokryttiv z vykorystanniam plastychnoho deformuvannia [Improving the quality of anti-friction coatings using plastic deformation]. Mechanics and Advanced Technologies, 6, 1, 24–30. https://doi.org/10.20535/2521-1943.2022.6.1.255655 [in Ukrainian].

18. Shepelenko, I., Cherkun, V. & Warouma, A. (2014). Improvement of finishing antifriction treatment without abrasive of the rubbing parts surfaces of agricultural machineries. Int J Agric Res Innov Technol, 4(1): 98–101. https://ageconsearch.umn.edu/record/305359/ [in English].

19. Nemyrovskyi, Y., Shepelenko, I., Posviatenko, E., Chernovol, M., & Zlatopolskiy, F. (2022). Creation of progressive hole processing processes based on the study of contact phenomena during deforming broaching and finishing antifriction non-abrasive treatment in various technological environments. Problems of Tribology, 27(1/103), 14–25. https://doi.org/10.31891/2079-1372-2022-103-1-14-25 [in English].

20. Nemyrovskyi, Ya., Shepelenko, I., Osin, R. & Posviatenko, E. (2022). Improving the processing quality of cylinder liners using combined technology. Cutting and Tools in Technological Systems, 96: 121–130. http://rits.khpi.edu.ua/article/view/252506 [in English].

21. Kosiiuk, M.M., Kostiuk, S.A. & Kostiuk, M.A. (2018). Tekhnolohichne zabezpechennia nanesennia antyfryktsijnoho pokryttia na nepovni sferychni poverkhni fryktsijno-mekhanichnym sposobom [Technological support for the application of antifriction coating on incomplete spherical surfaces by friction-mechanical method]. Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky - Bulletin of the Khmelnytskyi National University. Technical sciences, 4, 38–42. https://elar.khmnu.edu.ua/items/e3f20be0-836d-4efe-8c35-008bf12fe62c [in Ukrainian].

22. Solovykh, E.K., Lyashenko, B.A., Dmitriev, Yu.V. & Borisov, Yu.S. (2008). Optimization of the procedure of plasma spraying of erosion-resistant coatings according to strength criteria. Strength of Materials, Vol. 40, Issue 6. P. 699–710 [in English].

23. Klymenko, A., Anisimov, V. & Sytar, V. (2020). Rozrobka tonkosharovykh pokryttiv na osnovi fenilonu dlia zakhystu poverkhon' vid hazo- ta hidroabrazyvnoho znoshuvannia [Development of thin-layer coatings based on phenylene to protect surfaces from gas and water abrasion]. Tekhnichni nauky ta tekhnolohii - Technical sciences and technologies, 4 (22), 28–34. http://tst.stu.cn.ua/article/view/227170/227173 [in Ukrainian].

24. Shepelenko, I.V., Hutsul, V.I. & Mahopets', M.S. (2022). Osoblyvosti rozrakhunku napruzheno-deformovanoho stanu antyfryktsijnykh pokryttiv [Features of calculation of the stress-strain state of antifriction coatings]. Comprehensive quality assurance of technological processes and systems (KZYATPS - 2022): ХІІ Mizhnarodnа naukovo-praktychnа konferentsiia (26–27 travnia 2022 r.) - XII International Scientific and Practical Conference (рр. 104–105). Chernihiv [in Ukrainian].

25. Shepelenko, I., Nemyrovskyi, Y., Lizunkov, O., Vasylenko, I. & Osin, R. (2023). The Stress-Deformed State of the Cylinder Liner’s Working Surface. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Rauch, E., Piteľ, J. (eds) Advances in Design, Simulation and Manufacturing VI. DSMIE 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-32767-4_33 [in English].

26. Solovykh, E., Shepelenko, I., Chernovol, M., Shumliakivsky, V., Solovuch, A. & Katerynych, S. (2023). Multicriteria optimization of heat-resistant coatings detonation spraying technology. Problems of Tribology, 28(4/110), 36–43. https://doi.org/10.31891/2079-1372-2023-110-4-36-4 [in English].

27. Veselivska, H.H., Student, M.M., Posuvailo, V.M. et al. (2023). Electrochemical Properties of Plasma-Electrolytically Oxidized Aluminum Coatings Sprayed on MA5 Magnesium Alloy. Mater Sci 59, 49–55 https://doi.org/10.1007/s11003-023-00742-x [in English].

28. Tian, N., Zhou, S., Zhang, C. et al. (2023). Effect of High-Current Pulsed Electron Beam Irradiation on the Microstructure and Mechanical Properties of Multilayered TiN/TiCN/Al2O3 Coatings. J. of Materi Eng and Perform https://doi.org/10.1007/s11665-023-08723-6 [in English].

29. Solovykh, E., Shepelenko, I., Solovuch, A., & Katerynych, S. (2022). Features of ion nitriding technology multicriteria optimization. Problems of Tribology, Vol. 27, № 27(4/106), P. 13–18. https://doi.org/10.31891/2079-1372-2022-106-4-13-18 [in English].

30. Shepelenko, I.V., Drieiev, O.M. & Mokhamed Budar R.F. (2020). Vyznachennia iakosti metalevykh pokryttiv [Determining the quality of metal coatings]. Youth and technical progress in agriculture. Innovative developments in the agricultural sector: Mizhnarodnа naukovo-praktychnа konferentsiia (07 – 08 travnia 2020 r.) - International Scientific and Practical Conference (рр. 298–299). Kharkiv: KhNTUSH [in Ukrainian].

31. Shepelenko, I.V., Nemyrovs'kyj, Ya.B. & Posviatenko, E.K. (2020). Intensyfikatsiia protsesu nanesennia antyfryktsijnykh pokryttiv [Intensification of the process of applying anti-friction coatings]. Progressive engineering, technology and engineering education: ХХІ Mizhnarodna naukovo-tekhnichna konferentsiia (06 – 09 zhovtnia 2020 r.) - International scientific and technical conference (рр. 94-96), Kyiv: KPI [in Ukrainian].

32. Vasylkovska, K.V., Leshchenko, S.M., Vasylkovskyi, O.M. & Petrenko, D.I. (2016). Improvement of equipment for basic tillage and sowing as initial stage of harvest forecasting. INMATEH – Agricultural Engineerin, Vol. 50, Issue 3. Р. 13–20 [in English].

33. Shepelenko, I., Nemyrovskyi, Y., Tsekhanov, Y., Posviatenko, E. & Sardak, S. (2020). Power Parameters of Micro-cutting During Finishing Anti-friction Non-abrasive Treatment. In: Karabegović, I. (eds) New Technologies, Development and Application III. NT 2020. Lecture Notes in Networks and Systems, Vol. 128. Springer, Cham. https://doi.org/10.1007/978-3-030-46817-0_22 [in English].

Citations

1. Щепетов В.В., Харченко О.В., Харченко С.Д. Зносостійкі захисні покриття: за ред. чл.-кор. НАН України В.П. Бабака. Наукова думка, 2022. 122 с.

2. Nemyrovskyi Y., Shepelenko I., Medvedieva O. Improving the Durability of Agricultural Machinery Parts by Applying Antifriction Coatings. Acta Scientific Agriculture. 2020. Vol. 4. № 5. Р. 46–57. https://actascientific.com/ASAG/ASAG-04-0840.php

3. Shepelenko I., Posviatenko E., Cherkun V. The mechanism of formation of anti-friction coatings by employing friction-mechanical method. Problems of Tribology. 2019. 24(1/91), 35–39. https://doi.org/10.31891/2079-1372-2019-91-1-35-39

4. Mykhailo Chernovol, Shepelenko Igor, Budar Mohamed R.F. Effectiveness increase in application of FANT of the components of mobile agricultural machines. Загальнодержавний міжвідомчий науково-технічний збірник «Конструювання, виробництво та експлуатація сільськогосподарських машин». 2015. Вип. 45(1). С. 10–13. https://dspace.kntu.kr.ua/handle/123456789/2128

5. Солових Є.К. Науково-методологічні основи підвищення несучої здатності функціональних покриттів конструктивними та технологічними методами: автореф. дис. докт. техн. наук: 05.03.07. Київ, 2013. 36 с.

6. Abdullah Rasheed A, Ihor Shepelenko, Eduard Posviatyenko. Experimental quality improvement of the application of antifriction coating. First International Conference on Advances in Physical Sciences and Materials 13-14 August 2020, Coimbatore, India. Journal of Physics: Conference Series, 2020. Vol. 1706. рр.1–11. https://iopscience.iop.org/article/10.1088/1742-6596/1706/1/012187

7. Shepelenko I., Tsekhanov Y., Nemyrovskyi Y., Posviatenko E. Improving the Efficiency of Antifriction Coatings by Means of Finishing the Antifriction Non-abrasive Treatment. In: Tonkonogyi, V., et al. Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. 2020. https://doi.org/10.1007/978-3-030-40724-7_30

8. Shepelenko I. et al. Modeling of contact interaction of microroughnesses of treated surfaces during finishing anti-friction non-abrasive treatment FANT. Mechatronic Systems 2. Routledge, 2021. 237–246. https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/37245/106488.pdf?sequence=2&isAllowed=y

9. Шепеленко І.В., Кириченко А.М., Магопець С.О., Красота М.В., Василенко І.Ф. Зміна шорсткості поверхні при нанесенні антифрикційних покриттів. Загальнодержавний міжвідомчий науково-технічний збірник «Конструювання, виробництво та експлуатація сільськогосподарських машин». 2022. Вип.52. С.156–165. http://zbirniksgm.kntu.kr.ua/pdf/52/18.pdf

10. Sun H., Tan W., Ruan Y. et al. Surface roughness classification using light scattering matrix and deep learning. Sci. China Technol. Sci. (2023). https://doi.org/10.1007/s11431-023-2545-8

11. Шепеленко І.В. Наукові основи технології нанесення антифрикційних покриттів з використанням пластичного деформування: автореф. дис....д-ра техн. наук: 05.02.08. Київ, 2021. 43 с.

12. Shepelenko I. Technological factors influence on the antifriction coatings quality. Problems of Tribology. 2021. 26(2/100). P. 50–57. https://doi.org/10.31891/2079-1372-2021-100-2-50-57

13. Shepelenko I. The study of surface roughness in the process of finishing anti-friction non-abrasive treatment. Problems of Tribology. 2020. 25(1/95), 34–40. https://doi.org/10.31891/2079-1372-2020-95-1-34-40

14. Shepelenko I., Nemyrovskyi Y., Stepchyn Y., Mahopets S., Melnyk O. (2024). Creation of a Combined Technology for Processing Parts Based on the Application of an Antifriction Coating and Deforming Broaching. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-42778-7_19

15. Шепеленко І.В., Цеханов Ю.О., Немировський Я.Б. Дослідження мікрорізання в процесі фінішної антифрикційної безабразивної обробки. Прогресивні технології в машинобудуванні – 2020: зб. наукових праць IX Міжнар. наук.-техн. конф., 3 – 7 лютого 2020 р., Львів - Плай, 2020. С.162–164.

16. Shepelenko I., Tsekhanov Yu., Nemyrovskyi Ya., Posvyatenko E., Eremin P. Simulation of micro-cutting in the process of finishing anti-friction non-abrasive treatment. Ukrainian Journal of Mechanical Engineering and Materials Science 2019. Vol. 5, no. 2. Р. 43-52, https://doi.org/10.23939/ujmems2019.02.043

17. Шепеленко І.В., Немировський Я.Б., Посвятенко Е.К. Підвищення якості антифрикційних покриттів з використанням пластичного деформування. Mechanics and Advanced Technologies. 2022. Т. 6, № 1. С.24–30. https://doi.org/10.20535/2521-1943.2022.6.1.255655

18. Shepelenko I., Cherkun V., Warouma A. Improvement of finishing antifriction treatment without abrasive of the rubbing parts surfaces of agricultural machineries. Int J Agric Res Innov Technol. 2014. № 4(1). Р. 98–101. https://ageconsearch.umn.edu/record/305359/

19. Nemyrovskyi Y., Shepelenko I., Posviatenko E., Chernovol M., Zlatopolskiy F. Creation of progressive hole processing processes based on the study of contact phenomena during deforming broaching and finishing antifriction non-abrasive treatment in various technological environments. Problems of Tribology. 2022. №27(1/103). Р. 14–25. https://doi.org/10.31891/2079-1372-2022-103-1-14-25

20. Nemyrovskyi Ya., Shepelenko I., Osin R. & Posviatenko E. Improving the processing quality of cylinder liners using combined technology. Cutting and Tools in Technological Systems. 2022. № 96. Р. 121–130. http://rits.khpi.edu.ua/article/view/252506

21. Косіюк М.М., Костюк С.А., Костюк М.А. Технологічне забезпечення нанесення антифрикційного покриття на неповні сферичні поверхні фрикційно-механічним способом. Вісник Хмельницького національного університету. Технічні науки. 2018. № 4. С. 38–42. https://elar.khmnu.edu.ua/items/e3f20be0-836d-4efe-8c35-008bf12fe62c

22. Solovykh E.K., Lyashenko B.A., Dmitriev Yu.V., Borisov Yu.S. Optimization of the procedure of plasma spraying of erosion-resistant coatings according to strength criteria. Strength of Materials. 2008. Vol. 40. Issue 6. P.699–710.

23. Клименко А., Анісімов В., Ситар В. Розробка тонкошарових покриттів на основі фенілону для захисту поверхонь від газо- та гідроабразивного зношування. Технічні науки та технології. 2020. № 4 (22). С. 28–34. http://tst.stu.cn.ua/article/view/227170/227173

24. Шепеленко І.В., Гуцул В.І., Магопець М.С. Особливості розрахунку напружено-деформованого стану антифрикційних покриттів. Комплексне забезпечення якості технологічних процесів та систем (КЗЯТПС - 2022): матеріали ХІІ Міжнародної науково-практичної конференції (26–27 травня 2022 р.): у 2-х т. Чернігів, 2022. Т.1. С. 104–105.

25. Shepelenko I., Nemyrovskyi Y., Lizunkov O., Vasylenko I., Osin R. (2023). The Stress-Deformed State of the Cylinder Liner’s Working Surface. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Rauch, E., Piteľ, J. (eds) Advances in Design, Simulation and Manufacturing VI. DSMIE 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-32767-4_33

26. Solovykh E., Shepelenko I., Chernovol M. et al. Multicriteria optimization of heat-resistant coatings detonation spraying technology. Problems of Tribology. 2023. 28(4/110). Р. 36–43. https://doi.org/10.31891/2079-1372-2023-110-4-36-4

27. Veselivska H.H., Student M.M., Posuvailo V.M. et al. Electrochemical Properties of Plasma-Electrolytically Oxidized Aluminum Coatings Sprayed on MA5 Magnesium Alloy. Mater Sci . 2023. Vol. 59. P. 49–55 https://doi.org/10.1007/s11003-023-00742-x

28. Tian N., Zhou S., Zhang C. et al. Effect of High-Current Pulsed Electron Beam Irradiation on the Microstructure and Mechanical Properties of Multilayered TiN/TiCN/Al2O3 Coatings. J. of Materi Eng and Perform 2023. https://doi.org/10.1007/s11665-023-08723-6

29. Solovykh E., Shepelenko I., Solovuch A., Katerynych S. Features of ion nitriding technology multicriteria optimization. Problems of Tribology. 2022. Vol. 27, № (4/106). Р. 13–18. https://doi.org/10.31891/2079-1372-2022-106-4-13-18

30. Шепеленко І.В., Дрєєв О.М., Мохамед Будар Р.Ф. Визначення якості металевих покриттів. Молодь і технічний прогрес в АПК. Інноваційні розробки в аграрній сфері: матеріали Міжнар. наук.-практ. конф., 07 – 08 травня 2020 р. Харків: ХНТУСГ, 2020. Т. 2. С.298–299.

31. Шепеленко І.В., Немировський Я.Б., Посвятенко Е.К. Інтенсифікація процесу нанесення антифрикційних покриттів. Прогресивна техніка, технологія та інженерна освіта: матеріали ХХІ Міжнар. наук.-техн. конф., 06 – 09 жовтня 2020 р. м.Київ: КПІ, 2020. С.94–96.

32. Vasylkovska K.V., Leshchenko S.M., Vasylkovskyi O.M., Petrenko D.I. Improvement of equipment for basic tillage and sowing as initial stage of harvest forecasting. INMATEH – Agricultural Engineering. 2016. Vol. 50 Issue 3. Р. 13–20.

33. Shepelenko I., Nemyrovskyi Y., Tsekhanov Y., Posviatenko E., Sardak S. Power Parameters of Micro-cutting During Finishing Anti-friction Non-abrasive Treatment. In: Karabegović, I. (eds) New Technologies, Development and Application III. NT 2020. Lecture Notes in Networks and Systems. 2020. Vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-46817-0_22.

Copyright (c) 2023 Ihor Shepelenko, Mykhailo Chernovol, Serhii Leshchenko, Michael Krasota, Yakiv Nemyrovskyi, Volodymyr Shumliakivsky