DOI: https://doi.org/10.32515/2664-262X.2023.8(39).2.3-10

Functional portrait of a gear hydraulic machine

Mykhailo Pidhaietskyii, Kyryl Shcherbyna, Andrii Kyrychenko, Viktor Hodorodozha, Tetiana Dzhus

About the Authors

Mykhailo Pidhaietskyii, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0002-1633-4924

Kyryl Shcherbyna, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kir2912s@ukr.net , ORCID ID: 0000-0002-1665-7686

Andrii Kyrychenko, Professor, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: amkyrychenko@gmail.com, ORCID ID: 0000-0002-4335-9588

Viktor Hodorodozha, рost-graduate, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Tetiana Dzhus, master student, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

Increasing the efficiency of the functional performance of various mechanisms, including hydraulic gear pumps and motors, is one of the most important issues in the development of mechanical engineering. Special attention should be paid to the indicators of the volume flow rate and the torque. One of the ways is to study the mutual influence of the output parameters of the hydraulic gear machine. Some of the main parameters that determine the functional performance of a gear hydraulic machine are volume flow, power and torque, which in turn form the overall efficiency. It is necessary to create a functional portrait in order to determine the influence of these indicators on the overall efficiency and to improve the efficiency of the gear hydraulic machine. The resulting functional portrait will make it possible to determine the indicator for optimizing the operation of a gear hydraulic machine, both in pump mode and in motor mode. In turn, it will allow us to combine correlations with each other. In order to obtain the optimal indicators for building a functional portrait, a scheme for diagnosing a gear hydraulic machine in the pump-motor mode has been developed. An algorithm for its operation has been presented. As a result of the construction of a functional diagram of a gear hydraulic machine in pump mode, it was found that its operation has no inertia and its parameters are stable and dependent on the dimensional diagram. The orientation of the end bearings occurs during operation in pumping mode under frictional, sliding and dynamic conditions, which ensures improved sealing. On the other hand, the functional portrait of a gear hydraulic machine in motor mode has a zone of inertia, which can be stable or not, depending on the starting moment. Also, on the basis of the obtained functional portrait, it can be assumed that the probable cause of the failure of the gear pump and the motor during the acceptance tests may be the insufficient study of their interdependencies at the stage of development of the design documentation.

Keywords

functional portrait, gear pump, gear motor, displacement, total efficiency

Full Text:

PDF

References

1. Kuznietsov, Yu. M., Novos'olov, Yu. K. & Lutsiv, I. V. (2011). Teoriia tekhnichnykh system [Theory of technical systems]. Sevastopol : SevNTU [in Ukrainian].

2. Pidhaiets'kyj, M. M. & Skibins'kyj, O. I. (2014) Tekhnolohiia vyprobuvannia ta sertyfikatsii produktsii v mashynobuduvanni [Technology of testing and certification of products in mechanical engineering]. Kirovohrad : KNTU [in Ukrainian].

3. Matviienko, O.O. (2005). Matematychna model' vtrat robochoi ridyny cherez radial'nyj zazor shesterennoho nasosa typu NSh [Mathematical model of losses of the working fluid due to the radial clearance of the gear pump type NSh]. Zbirnyk naukovykh prats' Kirovohrads'koho natsional'noho tekhnichnoho universytetu. Tekhnika v sil's'kohospodars'komu vyrobnytstvi, haluzeve mashynobuduvannia, avtomatyzatsiia – Collected Works of Kirovohrad National Technical University. Machinery in Agricultural Production, Industry Machine Building, Automation, 16, 235-240 [in Ukrainian].

4. Kuleshkov, Y.V., Krasota, М.V., Rudenko, Т.V. et al. (2022). Pidvyschennia podachi shesterennykh nasosiv zasobiv transportu ta sil's'kohospodars'koi tekhniky [Increasing the Supply of Gear Pumps for Vehicles and Agricultural Machinery]. Tsentral'noukrains'kyj naukovyj visnyk. Tekhnichni nauky – Central Ukraіnian National Technical University. Technikal sciences, 4(36), 1, 197–203 DOI: https://doi.org/10.32515/2664-262X.2022.5(36).1.197-203 [in Ukrainian].

5. Kulieshkov, Yu.V. (2013). Pidvyschennia tekhnichnoho rivnia shesterennoho nasosa na osnovi novykh fizychnykh i matematychnykh modelej robochoho protsesu podachi [Increasing the technical level of the gear pump on the basis of new physical and mathematical models of the working process of feeding]. Doctors thesis. Kharkiv [in Ukrainian].

6. Kyrychenko, A.M., Scherbyna, K.K. & Hodorozha, V.A. (2023) Funktsional'nyj portret shesterennoho hidravlichnoho nasosu [Functional portrait of a gear hydraulic pump]. Comprehensive quality assurance of technological processes and systems (KZYATPS - 2023): ХІІІ Mizhnarodna naukovo-praktychna konferentsiia (25-26 travn., 2023r) – ХІІІ International scientific and practical conference (рр. 288-289). Chernihiv: NU "Chernihivska politekhnika" [in Ukrainian].

7. Yang Zhou, Bowen Che & Ci Yuan. (2018). The design and analysis of a high-speed circular arc gear pump journal bearing. Advances in Mechanical Engineering, Vol. 10(12,) P.1–11. DOI: https://doi.org/10.1177/1687814018819288 [in English].

8. Zardin, B., Natali, E. & Borghi, M. (2019). Evaluation of the Hydro-Mechanical Efficiency of External Gear Pumps. Energies, 12(2468). DOI: https://doi.org/10.3390/en12132468 [in English].

9. Fang, Guo & Zongde, Fang. (2018). Experimental and theoretical study of gear dynamical transmission characteristic considering measured manufacturing errors. Hindawi. Shock and Vibration. Р. 1-20. DOI: https://doi.org/10.1155/2018/9645453 [in English].

10. Gear pump cavitation reduction (United States Patent № 7878781 B2). (2011) [in English].

Citations

1. Кузнєцов Ю. М., Новосьолов Ю. К., Луців І. В. Теорія технічних систем: підручник. Севастополь : СевНТУ, 2011. 246 с.

2. Підгаєцький М. М., Скібінський О. І. Технологія випробування та сертифікації продукції в машинобудуванні: навч. посіб. Кіровоград : КНТУ, 2014. 144 с.

3. Матвієнко О.О. Математична модель втрат робочої рідини через радіальний зазор шестеренного насоса типу НШ. Збірник наукових праць Кіровоградського національного технічного університету. Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація. 2005. Вип. 16. С. 235-240.

4. Підвищення подачі шестеренних насосів засобів транспорту та сільськогосподарської техніки / Кулєшков Ю. В. та ін. Центральноукраїнський науковий вісник. Технічні науки. 2022. Вип. 4 (36). ч. 1. С. 197–203. DOI: https://doi.org/10.32515/2664-262X.2022.5(36).1.197-203

5. Кулєшков Ю.В.. Підвищення технічного рівня шестеренного насоса на основі нових фізичних і математичних моделей робочого процесу подачі: дис. на здобуття наук. ступеня д-ра техн. наук : 05.05.17 / Націон. техн. ун-т «ХПІ». Харків, 2013. 442с.

6. Кириченко А.М., Щербина К.К., Годорожа В.А. Функціональний портрет шестеренного гідравлічного насосу. Комплексне забезпечення якості технологічних процесів та систем (КЗЯТПС - 2023): матер. ХІІІ міжнар. наук.-практ. конф., 25-26 трав., 2023р. Чернігів: НУ "Чернігівська політехніка", 2023. Т. 1. С. 288-289.

7. Yang Zhou, Bowen Che, Ci Yuan. The design and analysis of a high-speed circular arc gear pump journal bearing. Advances in Mechanical Engineering. 2018. Vol. 10(12) P.1–11. DOI: https://doi.org/10.1177/1687814018819288.

8. Zardin B, Natali E, Borghi M. Evaluation of the Hydro-Mechanical Efficiency of External Gear Pumps. Energies. 2019. Vol. 12(2468). DOI: https://doi.org/10.3390/en12132468.

9. Fang Guo, Zongde Fang. Experimental and theoretical study of gear dynamical transmission characteristic considering measured manufacturing errors. Hindawi. Shock and Vibration. 2018. P. 1-20. DOI: https://doi.org/10.1155/2018/9645453.

10. Gear pump cavitation reduction : пат. 7878781 B2 United States : МПК FOIC 2L/00. № 12/001,279 ; заявл. 11.12.2007 ; опубл. 01.02.2011, Бюл. № 2.

Copyright (c) 2023 Mykhailo Pidhaietskyii, Kyryl Shcherbyna, Andrii Kyrychenko, Viktor Hodorodozha, Tetiana Dzhus