DOI: https://doi.org/10.32515/2664-262X.2023.8(39).2.98-115

Comparative analysis of the load-bearing capacity of experimental damaged reinforced concrete elements reinforced with metal clips

Iryna Karpiuk, Yevhenii Klymenko, Denis Danilenkob, Mariia Karpiuk

About the Authors

Iryna Karpiuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Odessa State Academy of Civil Engineering and Architecture, Odesa, Ukraine , e-mail: irina.carpyuk@gmail.com, ORCID ID: 0000-0003-3437-5882

Yevhenii Klymenko, Professor, Doctor in Technics (Doctor of Technic Sciences), Odessa State Academy of Civil Engineering and Architecture, Odesa, Ukraine , e-mail: klimenkoew57@gmail.com, ORCID ID: 0000-0002-4502-8504

Denis Danilenkob, Design Engineer, PhD in Technics (Candidate of Technics Sciences), Construction company “STIKON”, Odesa, Ukraine , e-mail: doazisds@gmail.com

Mariia Karpiuk, student, Department of Reinforced Concrete Structures and Transportation Structures, Odessa State Academy of Civil Engineering and Architecture, Odesa, Ukraine , e-mail: marai.v.karpiuk@gmail.com

Abstract

The paper presents research results and a comparative analysis of the load-bearing deformability and crack resistance of basalt concrete beams brought to the limit state (ULS) in previous tests. The beams were reinforced with prestressed metal clips under high-level static and low-cycle alternating loads. The work performed comparative calculations of reinforced building structures using proprietary methods and existing regulatory methods. A comparison of the experimental and calculated values of the bearing capacity of damaged experimental beam samples showed their unsatisfactory convergence because the well-known regulatory and proprietary methods provide for the calculation of the bearing capacity of damaged reinforced concrete structures along a dangerous inclined crack under the predominant action of transverse force, i.e. the top of a dangerous inclined crack and clamps and vertical elements of external reinforcement. However, experimental and theoretical studies have shown that the destruction of prototype beams with large and medium shear spans under a variable low-cycle load occurs along dangerous inclined through cracks, from the overwhelming action of bending moments, in the longitudinal reinforcement elements of the frame, in the longitudinal tensile reinforcement, as well as transverse beam beams and yield stress cages. That is, the real physical picture of the operation of the system “damaged reinforced concrete beam – prestressed metal reinforcement cage” under alternating transverse load at high levels differs significantly from the physical model of previously existing regulatory and proprietary methods. All existing regulatory and proprietary methods provide for the calculation of the bearing capacity of damaged reinforced concrete structures along a dangerous inclined crack under the predominant action of transverse force, that is, the components of the bearing capacity of inclined sections on concrete above the top of a dangerous inclined crack and clamps and external elements are taken into account. Experimental and theoretical studies have shown that the destruction of prototype beams with large and medium shear spans, under alternating low-cycle loads, occurs along dangerous inclined through cracks from the overwhelming action of bending moments in the longitudinal tensile reinforcement, as well as in the transverse rods of the beam and the cage yield strength.

Keywords

Damaged basalt concrete beams; reinforcement of supporting areas with carbon fiber shirts; reinforcement of the lower stretched zones with carbon plastic sheets; deformability of concrete, reinforcement and fiber-reinforced plastic; crack resistance of beams; experimental and statistical dependencies

Full Text:

PDF

References

1. He, Z. & Liu, Z. (2010). Stresses in external and internal unbondedtendons: unified methodology and design equations. Journal of Structural Engineering, No. 36, P.1055–1065. https://www.researchgate.net/publication/245305693_Stresses_in_External_and_Internal_Unbonded_Tendons_Unified_Methodology_and_Design_Equations [in English].

2. Karpiuk, V., Tselikova, A., Khudobych, A., Karpiuk, I. & Kostyuk A. (2020). Study of strength, deformability property and crack resistance of beams with BFRP. Eastern-European journal of enterprise technologies, Vоl. 4/7 (8), P. 42-53 http://journals.uran.ua/eejet/article/view/209378/211998 [in English].

3. Danilenko, D., Zavoloka, M. & Karpiuk, V. et al. (2020). Load-bearing capacity of damaged reinforced concrete span structures strengthened with prestressed metal casings. Journal of Engineering Science, 2, 106–127 [in English].

4. Naaman, A. & Alkhairi, F. (1991). Stress at ultimate in unbonded post-tensioning tendons. Part 2. Proposed methodology. ACI Structural Journal, №88, P. 683-692 . https://www.researchgate.net/publication/279543485_Stress_at_ultimate_in_unbonded_post-tensioning_tendons_Part_2_Proposed_methodology [in English].

5. Ozkul, O., Nassif, H., Tanchan, P. & Harajli M. (2008). Rational approach for predicting stressin beams with unbonded. ACI Structural Journal, №105, P. 338–347. https://scholarworks.aub.edu.lb/handle/10938/13903 [in English].

6. Zhou, С., Sun, J., Zeng, Z. & Jie, Z. (2019). Studies on the RC beam streng the ned by using the exterior-wrapping U-shaped steel plate and It sapplication. Advancesin Civil Engineering, №1, P. 1-9. https://www.hindawi.com/journals/ace/2019/2396764/ [in English].

7. Karpiuk, V. M. et al. (2016). Vplyv konstruktyvnykh chynnykiv ta faktoriv zovnishn'oi dii na nesuchu zdatnist' balkovykh konstruktsij pry malotsyklovomu navantazhenni [The influence of structural factors and factors of external action on the bearing capacity of beam structures under short-cycle loading] [V. M. Karpyuk, K. I. Albu, D. S. Danilenko ta in.]. Visnyk Odes'koi derzhavnoi akademii budivnytstva ta arkhitektury - Bulletin of the Odessa State Academy of Construction and Architecture, 61, 130-136 http://mx.ogasa.org.ua/handle/123456789/2440 [in Ukrainian].

8. Danylenko, D. S. et al. (2020. Deformatyvnist' poshkodzhenykh zalizobetonnykh balok, posylenykh metalevymy obojmamy [Deformability of damaged reinforced concrete beams reinforced with metal clips]. Actual problems of engineering mechanics: VII Mizhnarodna naukovo-praktychna konferentsiia – International scientific and practical conference (рр. 81-84). Odesa : ODABA [in Ukrainian].

9. Remont i pidsylennia nesuchykh i ohorodzhuval'nykh budivel'nykh konstruktsij ta osnov budivel' i sporud [Repair and extension of load-bearing and enclosing building structures and foundations of buildings and structures]. (2016). DSTU B V.3.1-2:2016 from 2017-04-01. Kyiv : DP “UkrNDNTs”https://dnaop.com/html/62197/doc-%D0%94%D0%A1%D0%A2%D0%A3_%D0%91_%D0%92.3.1-2_2016 [in Ukrainian].

10. Karpiuk, V. M., Danylenko, D. S., Karpiuk, I. A. & Danylenko, A. V. Napruzheno-deformovanyj stan pidsylenykh metalevoiu obojmoiu, zalizobetonnykh balok za dii tsyklichnoho znakozminnoho navantazhennia [The stress-strain state of reinforced concrete beams reinforced with a metal bracket under the action of cyclic alternating load]. 76 naukovo-tekhnichnoi konferentsii profesors'ko-vykladats'koho skladu akademii (21-22 travnia, 2020 r.) -76 scientific and technical conference of the professorial staff of the academy (P. 92). Odesa : ODABA [in Ukrainian].

11. Karpiuk, V. M., Albu, K. I. & Danylenko, D. S. (2016). Parametry trischynostijkosti balkovykh zalizobetonnykh elementiv pry dii znakozminnoho ta znakopostijnoho tsyklichnykh navantazhen' [Parameters of crack resistance of beam-reinforced concrete elements under the action of alternating sign and constant sign cyclic loads]. Visnyk Odes'koi derzhavnoi akademii budivnytstva ta arkhitektury – Bulletin of the Odessa State Academy of Construction and Architecture, 62, 220–228 [in Ukrainian].

Citations

1. He Z., Liu Z.. Stresses in external and internal unbondedtendons: unified methodology and design equations. Journal of Structural Engineering. 2010. №136. Р. 1055–1065. https://www.researchgate.net/publication/245305693_Stresses_in_External_and_Internal_Unbonded_Tendons_Unified_Methodology_and_Design_Equations

2. Karpiuk V., Tselikova A., Khudobych A., Karpiuk I., Kostyuk A. Study of strength, deformability property and crack resistance of beams with BFRP. Eastern-European journal of enterprise technologies. 2020. Vоl. 4/7 (8), P.42-53. http://journals.uran.ua/eejet/article/view/209378/211998

3. D. Danilenko, M. Zavoloka, V. Karpiuk et al. Load-bearing capacity of damaged reinforced concrete span structures strengthened with prestressed metal casings. Journal of Engineering Science. 2020. №2. P. 106–127.

4. Naaman A., Alkhairi F. Stress at ultimate in unbonded post-tensioning tendons. Part 2. Proposed methodology. ACI StructuralJournal. 1991. №88. P. 683–692. https://www.researchgate.net/publication/279543485_Stress_at_ultimate_in_unbonded_post-tensioning_tendons_Part_2_Proposed_methodology

5. Ozkul O., Nassif H., Tanchan P., Harajli M.. Rational approach for predicting stressin beams with unbonded. ACI Structural Journal. 2008. №105. P. 338–347. https://scholarworks.aub.edu.lb/handle/10938/13903

6. Zhou С., Sun J., Zeng Z., Jie Z. Studies on the RC beam streng the ned by using the exterior-wrapping U-shaped steel plate and It sapplication. Advancesin Civil Engineering. 2019. №1. P. 1–9. https://www.hindawi.com/journals/ace/2019/2396764/

7. Вплив конструктивних чинників та факторів зовнішньої дії на несучу здатність балкових конструкцій при малоцикловому навантаженні / Карпюк В. М. та ін. Вісник Одеської державної академії будівництва та архітектури. 2016. №61. С. 130-136. http://mx.ogasa.org.ua/handle/123456789/2440

8. Деформативність пошкоджених залізобетонних балок, посилених металевими обоймами / Даниленко Д. С. та ін. Актуальні проблеми інженерної механіки : тези доп. VII Міжнар. наук.-практ. конф. / під заг. ред. М. Г. Сур’янінова. Одеса : ОДАБА, 2020. С. 81-84.

9. ДСТУ Б В.3.1-2:2016. Ремонт і підсилення несучих і огороджувальних будівельних конструкцій та основ будівель і споруд. [Чинний від 2017-04-01]. Київ : ДП “УкрНДНЦ”, 2016. 98 с. https://dnaop.com/html/62197/doc-%D0%94%D0%A1%D0%A2%D0%A3_%D0%91_%D0%92.3.1-2_2016

10. Карпюк В. М., Даниленко Д. С., Карпюк І. А., Даниленко А. В. .Напружено-деформований стан підсилених металевою обоймою, залізобетонних балок за дії циклічного знакозмінного навантаження: тези доповідей 76 науково-технічної конференції професорсько-викладацького складу академії 21-22 травня, 2020 р. Одеса : ОДАБА, 2020. С. 92.

11. Параметри тріщиностійкості балкових залізобетонних елементів при дії знакозмінного та знакопостійного циклічних навантажень / В. М. Карпюк, К. І. Албу, Д. С. Даниленко та iн. Вісник Одеської державної академії будівництва та архітектури. 2016. №62. С. 220–228.

Copyright (c) 2023 Iryna Karpiuk, Yevhenii Klymenko, Denis Danilenkob, Mariia Karpiuk