DOI: https://doi.org/10.32515/2664-262X.2023.8(39).1.76-84

Study of the Effect of Stress Relaxation and Residual Deformation of Modern Polymer Materials to Protect the Surfaces of Parts From Wear

Andrii Puhach, Olexandr Chernii, Yevhen Kalhankov

About the Authors

Andrii Puhach, Professor, Doctor in Public Administrations (Doctor of Public Administration), Dnipro State Agrarian and Economic University, Dnipro, Ukraine, e-mail: anpugach13@gmail.com, ORCID ID: 0000-0002-5586-424X

Olexandr Chernii, Senior Lecturer, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, e-mail: sanek20.1984@gmail.com, ORCID ID: 0000-0003-0691-5829

Yevhen Kalhankov, Senior Lecturer, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, e-mail: kalhankov.ye.v@dsau.dp.ua, ORCID ID: 0000-0002-4759-6687

Abstract

Stress relaxation during compression of rubber and polymers is one of the indicators of their viscoelasticity. The purpose of the work is research on stress relaxation during compression and determination of the residual deformation of polymeric materials used in modern engineering for the production of protective coatings for machine parts. Experimental studies were carried out on a DM-30M laboratory unit with a ring dynamometer and a maximum compression force of 20kN. The DM-22M device is fixed on the press table.Samples for testing were cut from parts made of rubber produced by NVP «Valsa-GTV» and thermoplastic polyurethane with the trade name "Desmopan". During the test, the dependence of the stress drop in compressed samples of materials on time, the rate of stress relaxation was determined,the magnitude of the stress drop to the equilibrium value, the equilibrium modulus, as well as the residual deformation after the load is removed. The conducted studies established that at a constant relative deformation of 40%, thermoplastic polyurethane "Desmopan" is characterized by a lower tendency to stress relaxation, a higher modulus of elasticity under compression than lining rubbers, but has a larger residual deformation after unloading. Lining rubber, when comparing samples from new rubber and with about 9,300 hours of operation in difficult working conditions, showed itself as a material that is prone to internal structural transformations with an increase in the time of load perception. These transformations cause a change in the indicators of relaxation processes: the rate of stress relaxation decreases, the magnitude of the stress drop to the equilibrium state decreases, with a simultaneous increase in the modulus of elasticity.The results of the study can be used in the selection of material and calculations ofparts of protective coatings for performance and reliability.

Keywords

rubber, thermoplastic polyurethane, stress relaxation, residual deformation

Full Text:

PDF

References

1. Bulat, A.F., Dyrda, V.I., Zviagilskii, E.L. & Kobets, A.S. (2012), Prikladnaya mekhanika uprugo-nasledstvennykh sred. Tom 2. Metody rascheta elastomernykh detalei [Applied mechanics of elastic-hereditary media. Vol. 2. Design techniques of elastomeric parts]. Kyiv : Naukova dumka [in Russian].

2. Desmopan® – Thermoplastic Polyurethane (2023). Retrievedfrom www.covestro.com. [in English].

3. Dyrda, V.I., Lysytsia, M.I., Lapin, V.A., Ahaltsov, H.M., Kalhankov, Ye.V., Tolstenko, O.V. & Chernii, O.A. (2020). Dynamics of heavy vibrating machines taking into account instability in time of their parameters. News of the national academy of sciences of the republic of Kazakhstan. Series of geology and technical sciences, Vol.6, N 444 , 68 – 74. doi.org/10.32014/2020.2518-170X.132 [in English].

4. Bulat, A.F., Dyrda, V.I., & Kalhankov, Y.V. (2018). Synergetic model of the wave abrasive fatigue wear of rubber lining in the ball tube mills. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 39–47. doi:10.29202/nvngu/2018-5/5 [in English].

5. Peng, Q., Zhu, Z., Jiang, C., & Jiang, H. (2019). Effect of stress relaxation on accelerated physical aging of hydrogenated nitrile butadiene rubber using time-temperature-strain superposition principle. Advanced Industrial and Engineering Polymer Research, 2(2), 61–68. https://doi.org/10.1016/j.aiepr.2019.03.002 [in English].

6. Sukcharoen, K., Noraphaiphipaksa, N., Hasap, A., & Kanchanomai, C. (2022). Experimental and Numerical Evaluations of Localized Stress Relaxation for Vulcanized Rubber. Polymers, 14(5), 873. https://doi.org/10.3390/polym14050873 [in English].

7. Guzmán Sánchez, M. A. (2021). Comparative study of stress relaxation phenomenological constitutive modeling of carbon black-reinforced natural rubber-based compounds. DYNA, 88(216), 55–61. https://doi.org/10.15446/dyna.v88n216.89446 [in English].

8. Dyrda, V. I., Cherniy, O.A., Kalhankov, YE.V., Tolstenko, O.V., Filipenko, O.M. (2020) Eksperimentalnyye issledovaniya abrazivnogo iznosa sovremennykh materialov dlya futerovaniya rabochikh poverkhnostey mashin [Test for abrasive wear of modern materials for futting working surfaces of machines], Geo-Technical Mechanics, no. 151, Dnipro, Ukraine, DOI: https://doi.org/10.15407/geotm2020.151.150 [in Russian].

9. ISO 3384 «Rubber, vulcanized or thermoplastic — Determination of stress relaxation in compression — Part 1: Testing at constant temperature».[in English].

10. «Guma vulkanizovana chi termoplastichna. Viznachennya zalishkovoyi deformaciyi pislya stiskannya. Chastina 1. Viprobuvannya za standartnoyi chi pidvishenoyi temperaturi [Vulcanized or thermoplastic rubber. Determination of residual deformation after compression. Part 1. Tests at standard or elevated temperature] . (2019). DSTU 815-1:2019 (ISO 815-1:2014, IDT) [in Ukrainian].

Citations

  1. Прикладная механика упругонаследственных сред: В 3-х томах. Т. 2. Методы расчета эластомерных деталей / А.Ф. Булат, В.И. Дырда, Е.Л. Звягильский, А.С. Кобец. Киев: Наук. думка, 2012. 616 с.
  2. Desmopan® – Thermoplastic Polyurethane. URL: www.covestro.com. (дата звернення 06.08.2023).
  3. Dyrda V.I., Lysytsia M.I., Lapin V.A., Ahaltsov H.M., Kalhankov Ye.V., Tolstenko O.V., Chernii O.A. Dynamics of heavy vibrating machines taking into account instability in time of their parameters. News of the national academy of sciences of the republic of Kazakhstan. Series of geology and technical sciences. 2020, Vol. 6, Nо 444. Р. 68 – 74. doi.org/10.32014/2020.2518-170X.132.
  4. Bulat A.F., Dyrda V.I., Kalhankov Y.V. Synergetic model of the wave abrasive fatigue wear of rubber lining in the ball tube mills. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2018. (5). 39–47. doi:10.29202/nvngu/2018-5/5.
  5. Peng Q., Zhu Z., Jiang C., Jiang H. Effect of stress relaxation on accelerated physical aging of hydrogenated nitrile butadiene rubber using time-temperature-strain superposition principle. Advanced Industrial and Engineering Polymer Research. 2019. 2(2). 61–68. https://doi.org/10.1016/ j.aiepr.2019.03.002.
  6. Sukcharoen K., Noraphaiphipaksa,N., Hasap A., Kanchanomai C. Experimental and Numerical Evaluations of Localized Stress Relaxation for Vulcanized Rubber. Polymers. 2022. 14(5). P.873. https://doi.org/10.3390/polym14050873.
  7. Guzmán Sánchez M. A. Comparative study of stress relaxation phenomenological constitutive modeling of carbon black-reinforced natural rubber-based compounds. DYNA. 2021. 88(216). 55–61. https://doi.org/10.15446/dyna.v88n216.89446.
  8. Экспериментальные исследования абразивного износа современных материалов для футерования рабочих поверхностей машин / В.И. Дырда и др. Міжвідомчий збірник наукових праць інституту геотехнічної механікиім. М.С. Полякова НАНУ. Геотехнічна механіка . 2020. Вип. 151. С. 150- 56 . DOI: https://doi.org/10.15407/geotm2020.151.150.
  9. ISO 3384 «Rubber, vulcanized or thermoplastic  Determination of stress relaxation in compression  Part 1: Testing at constant temperature».
  10. ДСТУ ISO 815-1:2019 (ISO 815-1:2014, IDT) «Гума вулканізована чи термопластична. Визначення залишкової деформації післястискання. Частина 1. Випробування за стандартної чи підвищеної температури. [Чинний з 01.09.2019] . Вид. офіц. Київ : Держспоживстандарт України, 2019. 14 с.
Copyright (c) 2023 Andrii Puhach, Olexandr Chernii, Yevhen Kalhankov