DOI: https://doi.org/10.32515/2664-262X.2023.8(39).1.57-66

The Impact of Corrosion on the Technical Condition of Road Culverts and Modern Methods of Their Repair

Mykola Harkusha

About the Authors

Mykola Harkusha, Associate Professor, PhD in Technics (Candidate of Technics Sciences), National Transport University, Kyiv, Ukraine, e-mail: mykola.harkusha@ntu.edu.ua, ORCID ID: 0000-0002-5388-0561

Abstract

There were about 130,000 pieces of hydraulic engineering structures of transport construction from road culverts on the highways of Ukraine, which is more than 90% of the total number of transport structures on the roads. This is explained, first of all, by the more cost-effective use of pipes compared to small bridges, the arrangement of the subgrade without break ups, the increase in safety, speed and comfort of movement.With the increase in the number of hydraulic engineering structures of transport construction from road culverts on roads, the issue of ensuring the reliability and durability of their work during operation is of particular importance, as there is a large number of deformations, as well as cases of complete destruction of pipes under embankments of both existing automobile roads and and roads under construction.World experience indicates that corrosion damage is an extremely important problem and requires an appropriate response at a very early stage of development. The problem of the existing causes and consequences of corrosion on the road culvert is understudied. With the influence of negative factors on the road culverts, they go from an operational state to a limited-operational state. As a result of a failure, they go from a limited-operational state to a limited (emergency) state. The failure criteria of road culverts are parameters that determine the performance of the building as a whole, as well as its individual elements: protective coating, material pipes, structural features. These parameters or a set of them are established in regulatory and technical or design documentation. Approaches to influencing factors on the durability of road culverts in Ukraine have not been established, in contrast to norms in the EU or the USA. In addition, repair methods are not established in the Ukrainian normsof repair methods. Therefore, the purpose of the work is to conduct an analysis of the impact of corrosion on the technical condition of road culverts and modern methods of their repair. The article examines the impact of corrosion on the technical condition of road culverts, gives a brief description of the most common causes of corrosion of road culverts and modern methods of their repair. One of the methods of increasing the durability of road culverts is the use of modern materials and technologies for their manufacture.

Keywords

automobile road, hydraulic structures, durability, road culvert, corrosion, transport structure

Full Text:

PDF

References

1. Onyshchenko, A.M., Harkusha, M.V. & Klymenko, M.I. (2022). Analiz problem zabezpechennya nadiynosti ta dovhovichnosti hidrotekhnichnykh sporud transportnoho budivnytstva z dorozhnikh vodopropusknykh trub v umovakh ekspluatatsiyi. Dorohy i mosty, Issue 25, 190–202. DOI: https://doi.org/10.36100/dorogimosti2022.25.190 [in Ukrainian].

2. Onyshchenko, A. M., Harkusha, M. V. & Klymenko, M. I. (2022). Analiz tekhnichnoho stanu hidrotekhnichnykh sporud transportnoho budivnytstva z dorozhnikh vodopropusknykh trub vid vplyvu koroziyi. Avtomobilʹni dorohy i dorozhnye budivnytstvo , Issue 111, 164–173. DOI: 10.33744/0365-8171-2022-111-164-173 [in Ukrainian].

3. West, A.; Williams, K.; Villeneuve, D. & Carroll, P. (2012). Added Longevity with Thermoplastic Polymer Coated Structural Steel Plate. Atlantic Industries, Canada [in English].

4. Harkusha, M.V. (2023). Vplyv poshkodzhenykh hidrotekhnichnykh sporud transportnoho budivnytstva z dorozhnikh vodopropusknykh trub na navkolyshnye seredovyshche [Impact of damaged hydraulic structures of transport construction from road culverts on the environment]. Water supply and drainage: design, construction, operation, monitoring: V Mizhnarodna naukovo-tekhnichna konferentsia (11-13 zhovtnya 2023 roku Lʹviv)  V International scientific and technical conference (pp.82–83), Lʹviv [in Ukrainian]

5. Jay N. Meegoda, Thomas M. Juliano & Chi Tang (2009). Culvert Information Management System – Demonstration Project New Jersey Institute of Technology Newark, NJ 07102. P. 51 [in English].

6. BMROSS (2012). City of Ottawa Ottawa Road 174 at Jeanne D’Arc Pipe Collapse Root Cause Analysis Report. Р.37 [in English].

7. NCSPA. Corrugated Steel Pipe Design Manual (2008). National Corrugated Steel Pipe Association 14070 Proton Road Suite 100 LB 9 Dallas, TX 75244. Р 637 [in English].

8. Corrugated Steel Pipe Institute. (2009). Handbook of steel drainage & highway construction products. (2nd Canadian ed.). Canada: American Iron and Steel Institute [in English].

9. Spangler, M. G. (1941). The structural design of flexible pipe culverts. Iowa Engineering Experiment Station. Bulletin 153 [in English].

10. Beaton, J., & Stratfull, R. (1962). Field Test for Estimating Service Life of Corrugated Metal Pipe Culverts. Highway Research Board Proceedings, Vol. 41 [in English].

11. American Association of State Highway and Transportation Officials (AASHTO). (2007). Highway drainage guidelines. (4th ed.). Washington, D.C [in English].

12. Gabriel, L. H., Moran, E. T. (1998) Service Life of Drainage Pipe. Transportation Research Board, Washington, D.C [in English].

13. Chaker, V. (1990). Corrosion testing in soils  Past, present, and future. In Corrosion Testing and Evaluation: Silver Anniversary Volume (pp. 95-111): ASTM International [in English].

14. Modern Sewer Design (1995). American Iron and Steel Institute; 3rd edition. Р. 306 [in English].

15. Maher, M., Hebeler, G., & Fuggle, A. (2015). Service Life of Culverts. Transportation Research Board, Washington, D.C. Retrieved from http://www.trb.org/Main/Blurbs/172633.aspx [in English].

16. Beben, D. (2014). Backfill corrosivity around corrugated steel plate culverts. Journal of Performance of Constructed Facilities, 29(6) [in English].

17. Chaker, V. (1990). Corrosion testing in soils—Past, present, and future. In Corrosion Testing and Evaluation: Silver Anniversary Volume (pp. 95-111): ASTM International [in English].

18. California Department of Transportation (Caltrans), Caltrans Supplement to FHWA Culvert Repair Practices Manual, Design Information Bulletin No. 83-03, Caltrans, Sacramento, 2013 [in English].

19. California Department of Transportation, Division of Construction (CalTrans). (1978). Method for Estimating the Service Life of Steel Culverts: California Test 643. Sacramento, CA [in English].

20. Bradford, S. A. (2000). The practical handbook of corrosion control in soils [in English].

21. Hepfner, J. J. (2001). Statewide corrosivity study on corrugated steel culvert pipe [in English].

22. Corrugated Pipe Durability Guidelines, FHWA Technical Advisory T 5040,12, October 1979, Federal Highway Administration, Washington, D.C. 20590, 9 pp [in English].

23. West, A.; Williams, K.; Villeneuve, D.; Carroll, P. (2012). Added Longevity with Thermoplastic Polymer Coated Structural Steel Plate. Atlantic Industries, Canada [in English].

24. Corrugated Steel Pipe Institute. Canadian Performance Guideline for Structural Plate Corrugated Steel Pipe and Deep Corrugated Structural Plate Structures. Technical Bulletin. Issue Thirteen: October 24, 2011. Cambridge, Ontario [in English].

25. Ault, P. (2012). White Paper: Performance Guideline for Buried Steel Structures. Elzly Technology Corporation, Ocean City, New Jersey [in English].

26. AASHTO M 218 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized), for Corrugated Steel Pipe [in English].

27. AASHTO M 274 Standard Specification for Steel Sheet, Aluminum-Coated (Type 2), for Corrugated Steel Pipe [in English].

28. Berry, I. (2012). Uniquely Engineered Coating for Storm Sewers and Culverts. Warner Custom Coating. Presentation, Guelph, Ontario [in English].

29. Alamilla JL, Espinosa-Medina MA, Sosa E (2009). Modelling steel corrosion damage in soil environment. Corros Sci 51:2628–2638 [in English].

30. Chennareddy, Rahulreddy. Retrofit of Corroded Metal Culverts Using GFRP Slip-Liner, The University of New Mexico, 2019 [in English].

31. National Academies of Sciences, Engineering, and Medicine. (2015). Service Life of Culverts. Washington, DC: The National Academies Press. https://doi.org/10.17226/22140[in English].

32. Program, N.C.H.R., Culvert Rehabilitation to Maximize Service Life while Minimizing Direct Costs and Traffic Disruption. Vol. Project Number 14-19. 2010, Transportation Research Board: Government Printing Office[in English].

Citations

  1. Онищенко А. М., Гаркуша М. В., Клименко М. І. Аналіз проблем забезпечення надійності та довговічності гідротехнічних споруд транспортного будівництва з дорожніх водопропускних труб в умовах експлуатації. Дороги і мости. 2022. Вип. 25. С. 190–202. DOI: https://doi.org/10.36100/dorogimosti2022.25.190
  2. Онищенко А. М., Гаркуша М. В., Клименко М. І. Аналіз технічного стану гідротехнічних споруд транспортного будівництва з дорожніх водопропускних труб від впливу корозії. Автомобільні дороги і дорожнє будівництва. 2022. Вип. 111. С. 164–173. DOI: 10.33744/0365-8171-2022-111-164-173
  3. West, A.; Williams, K.; Villeneuve, D.; Carroll, P. (2012). Added Longevity with Thermoplastic Polymer Coated Structural Steel Plate. Atlantic Industries, Canada.
  4. Гаркуша М.В. Вплив пошкоджених гідротехнічних споруд транспортного будівництва з дорожніх водопропускних труб на навколишнє середовище. Водопостачання та водовідведення: проектування, будова, експлуатація, моніторинг: зб. тез V Міжн. наук.-техн. конф., 11-13 жовтня 2023 року, Нац. унів. «Львівська політехніка», м. Львів. С. 82 ― 83.
  5. Jay N. Meegoda, Thomas M. Juliano and Chi Tang (2009). Culvert Information Management System – Demonstration Project New Jersey Institute of Technology Newark, NJ 07102. P. 51
  6. BMROSS. City of Ottawa Ottawa Road 174 at Jeanne D’Arc Pipe Collapse Root Cause Analysis Report. 2012. Р.37
  7. NCSPA Corrugated Steel Pipe Design Manual (2008). National Corrugated Steel Pipe Association 14070 Proton Road Suite 100 LB 9 Dallas, TX 75244. Р 637.
  8. Corrugated Steel Pipe Institute. (2009). Handbook of steel drainage & highway construction products. (2nd Canadian ed.). Canada: American Iron and Steel Institute.
  9. Spangler, M. G. (1941). The structural design of flexible pipe culverts. Iowa Engineering Experiment Station. Bulletin 153
  10. Beaton, J., & Stratfull, R. (1962). Field Test for Estimating Service Life of Corrugated Metal Pipe Culverts. Highway Research Board Proceedings, Vol. 41.
  11. American Association of State Highway and Transportation Officials (AASHTO). (2007). Highway drainage guidelines. (4th ed.). Washington, D.C.
  12. Gabriel, L. H., Moran, E. T. (1998) Service Life of Drainage Pipe. Transportation Research Board, Washington, D.C.
  13. Chaker, V. (1990). Corrosion testing in soils—Past, present, and future. In Corrosion Testing and Evaluation: Silver Anniversary Volume (pp. 95-111): ASTM International.
  14. Modern Sewer Design (1995) American Iron and Steel Institute; 3rd edition. Р. 306.
  15. Maher, M., Hebeler, G., & Fuggle, A. (2015). Service Life of Culverts. Transportation Research Board, Washington, D.C. Retrieved from http://www.trb.org/Main/Blurbs/172633.aspx
  16. Beben, D. (2014). Backfill corrosivity around corrugated steel plate culverts. Journal of Performance of Constructed Facilities, 29(6).
  17. Chaker, V. (1990). Corrosion testing in soils—Past, present, and future. In Corrosion Testing and Evaluation: Silver Anniversary Volume (pp. 95-111): ASTM International.
  18. California Department of Transportation (Caltrans), Caltrans Supplement to FHWA Culvert Repair Practices Manual, Design Information Bulletin No. 83-03, Caltrans, Sacramento, 2013.
  19. California Department of Transportation, Division of Construction (CalTrans). (1978). Method for Estimating the Service Life of Steel Culverts: California Test 643. Sacramento, CA.
  20. Bradford, S. A. (2000). The practical handbook of corrosion control in soils.
  21. Hepfner, J. J. (2001). Statewide corrosivity study on corrugated steel culvert pipe.
  22. Corrugated Pipe Durability Guidelines, FHWA Technical Advisory T 5040,12, October 1979, Federal Highway Administration, Washington, D.C. 20590, 9 pp.
  23. West, A.; Williams, K.; Villeneuve, D.; Carroll, P. (2012). Added Longevity with Thermoplastic Polymer Coated Structural Steel Plate. Atlantic Industries, Canada.
  24. Corrugated Steel Pipe Institute. Canadian Performance Guideline for Structural Plate Corrugated Steel Pipe and Deep Corrugated Structural Plate Structures. Technical Bulletin. Issue Thirteen: October 24, 2011. Cambridge, Ontario.
  25. Ault, P. White Paper: Performance Guideline for Buried Steel Structures. Elzly Technology Corporation, 2012. Ocean City, New Jersey.
  26. AASHTO M 218 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized), for Corrugated Steel Pipe.
  27. AASHTO M 274Standard Specification for Steel Sheet, Aluminum-Coated (Type 2), for Corrugated Steel Pipe.
  28. Berry, I. Uniquely Engineered Coating for Storm Sewers and Culverts. Warner Custom Coating. Presentation, 2012. Guelph, Ontario.
  29. Alamilla JL, Espinosa-Medina MA, Sosa E (2009) Modelling steel corrosion damage in soil environment. Corros Sci 51:2628–2638.
  30. Chennareddy, Rahulreddy. Retrofit of Corroded Metal Culverts Using GFRP Slip-Liner, The University of New Mexico, 2019.
  31. National Academies of Sciences, Engineering, and Medicine. 2015. Service Life of Culverts. Washington, DC: The National Academies Press. https://doi.org/10.17226/22140
  32. Program, N.C.H.R., Culvert Rehabilitation to Maximize Service Life while Minimizing Direct Costs and Traffic Disruption. Vol. Project Number 14-19. 2010, Transportation Research Board: Government Printing Office.
Copyright (c) 2023 Mykola Harkusha