DOI: https://doi.org/10.32515/2664-262X.2023.8(39).1.183-195
Study of the Mathematical Model of the Stability of the Traffic Flow in the Sections of the Road Network of the City
About the Authors
Oleksiy Goryayinov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Biotechnological University, Kharkiv, Ukraine, e-mail: goryainov@ukr.net, ORCID ID: 0000-0002-5967-2835
Anna Kozenok, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Biotechnological University, Kharkiv, Ukraine, e-mail: anna13kozenok@gmail.comm, ORCID ID: 0000-0002-3152-2253
Nataliia Berezhna, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Biotechnological University, Kharkiv, Ukraine, ORCID ID: 0000-0001-8740-3387
Igor Sysenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Biotechnological University, Kharkiv, Ukraine, e-mail: goryainov@ukr.net, ORCID ID: 0000-0002-5967-2835
Inna Babych, Senior Lecturer, State Biotechnological University, Kharkiv, Ukraine, ORCID ID: 0000-0003-0005-7640
Olexsiy Voytov, Graduate student , State Biotechnological University, Kharkiv, Ukraine, ORCID ID: 0000-0001-8716-2667
Abstract
The paper presents the results of the research of the mathematical model of the stability of the traffic flow on the sections of the city's street and road network when external factors change. Based on the modeling results, it is proposed to divide all factors affecting the stability of the traffic flow into three groups. The first group of factors characterizes the construction of the vehicle: the length of the vehicle, the weight of the vehicle, the power of the engine. The second group of factors is called time factors, which take into account: the driver's reaction time to a change in the road situation; time for a maneuver that can be used by the car in case of a change in the road situation; the total time of delays while driving along the route. The third group of factors takes into account the peculiarities of the construction of the infrastructure of the road environment. Such factors include: the number of traffic lanes on the roadway; the number of pedestrian crossings and traffic lights.
Based on the results of modeling, a rating of factors affecting the amount of traffic flow stability margin is presented. The simulation results proved that, in the first place, the impact on the loss of stability of the traffic flow is the time for the maneuver that the car can use in the event of a change in the road situation and the number of pedestrian crossings and traffic lights on the controlled section of the road. When the listed factors change, the robustness criterion has minimal values. In second place in terms of influence on is a group of factors that take into account the driver's reaction time to a change in the road situation and the number of traffic lanes on the roadway. In third place is a group of factors that take into account the length of the car and the weight of the car.
It is proved that the mathematical model of traffic flow stability has limitations regarding its application. The limitations are related to the definition of the initial data for the simulation. It is necessary to determine the flow density on the controlled section of the road network. In addition, statistically determined values are the reaction time of drivers to a change in the road situation and the presence of pedestrian crossings and traffic lights on the controlled section of the road.
Keywords
traffic flow, modeling, dynamic model, density gradient, speed gradient, amplification factor, time constant, stability criterion, traffic flow robustness criterion
Full Text:
PDF
References
1. Vojtov, V.A., Kravtsov, A.H., Karnaukh, M.V., Horyayinov, O.M., Kozenok, A.S. & Babych, I.A. (2023). Otsinka erhonomichnoyi stiykosti transportnoho potoku na dilʹnytsyakh dorozhnʹoyi merezhi. Identyfikatsiya matematychnoyi modeli. [Assessment of ergonomic sustainability of traffic flow at road network sections. Identification of a mathematical model], Tsentralʹnoukrayinsʹkyy naukovyy visnyk. Tekhnichni nauky – Central Ukrainian scientific bulletin. Technical Sciences, Vol. 7(38), 236-245. https://doi.org/10.32515/2664-262X.2023.7(38).1.236-245 [in Ukrainian].
2. Kravtsov A.H., Larina T.F., Horyayinov O.M., Kozenok A.S., Horodetsʹka T.E., Babych I.A. (2023) Obhruntuvannya kryteriyu stiykosti transportnoho potoku na dilʹnytsyakh dorozhnʹoyi merezhi. [Justification of the traffic flow stability criterion at the sections of the road network], Tsentralʹnoukrayinsʹkyy naukovyy visnyk. Tekhnichni nauky – Central Ukrainian scientific bulletin. Technical Sciences, Vol. 7(38), 222-239 https://doi.org/10.32515/2664-262X.2023.7(38).2.222-230 [in Ukrainian].
3. Dorokhin, S., Artemov, A., Likhachev, D., Novikov, A., & Starkov, E. (2020, September). Traffic simulation: an analytical review. In IOP Conference Series: Materials Science and Engineering (Vol. 918, No. 1, p. 012058). IOP Publishing. DOI 10.1088/1757-899X/918/1/012058
4. Nagatani, T. (2023). Macroscopic traffic flow in multiple-loop networks. Physica A: Statistical Mechanics and its Applications, 609, 128324. https://doi.org/10.1016/j.physa.2022.128324
5. Herty, M., & Kolbe, N. (2022). Data-Driven Models for Traffic Flow at Junctions. arXiv preprint arXiv:2212.08912. https://doi.org/10.48550/arXiv.2212.08912
6. Karafyllis, I., Theodosis, D., & Papageorgiou, M. (2022). Stability analysis of nonlinear inviscid microscopic and macroscopic traffic flow models of bidirectional cruise-controlled vehicles. IMA Journal of Mathematical Control and Information, 39(2), 609-642. https://doi.org/10.1093/imamci/dnac003
7. Li, L., Ji, X., Gan, J., Qu, X., & Ran, B. (2021). A macroscopic model of heterogeneous traffic flow based on the safety potential field theory. IEEE Access, 9, 7460-7470. https://doi.org/10.1109/ACCESS.2021.3049393
8. Imran, W., Khan, Z. H., Gulliver, T. A., Khattak, K. S., & Nasir, H. (2020). A macroscopic traffic model for heterogeneous flow. Chinese Journal of Physics, 63, 419-435. https://doi.org/10.1016/j.cjph.2019.12.005
9. Yuan, C., Li, Y., Huang, H., Wang, S., Sun, Z., & Li, Y. (2022). Using traffic flow characteristics to predict real-time conflict risk: A novel method for trajectory data analysis. Analytic methods in accident research, 35, 100217. https://doi.org/10.1016/j.amar.2022.100217
10. Das, A., & Ahmed, M.M. (2022). Adjustment of key lane change parameters to develop microsimulation models for representative assessment of safety and operational impacts of adverse weather using SHRP2 naturalistic driving data. Journal of safety research, 81, 9-20. https://doi.org/10.1016/j.jsr.2022.01.002
11. Lazar H. (2019). Comparison of microscopic car following models. In 2019 International Conference on Systems of Collaboration Big Data, Internet of Things & Security (SysCoBIoTS) (pp. 1-6). IEEE. DOI:10.1109/SysCoBIoTS48768.2019.9028040
12. Feng, T., Liu, K., & Liang, C. (2023). An Improved Cellular Automata Traffic Flow Model Considering Driving Styles. Sustainability, 15(2), 952. https://doi.org/10.3390/su15020952
13. Kušić, K., Schumann, R., & Ivanjko, E. (2023). A digital twin in transportation: Real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics. Advanced Engineering Informatics, 55, 101858. https://doi.org/10.3390/su15032050
14. Shang, X. C., Liu, F., Li, X. G., Janssens, D., & Wets, G. (2023). The Impact of Three Specific Collaborative Merging Strategies on Traffic Flow. Journal of Advanced Transportation, 2023. https://doi.org/10.1155/2023/1375867
15. Wen, J., Hong, L., Dai, M., Xiao, X., & Wu, C. (2023). A stochastic model for stop-and-go phenomenon in traffic oscillation: On the prospective of macro and micro traffic flow. Applied Mathematics and Computation, 440, 127637. https://doi.org/10.1016/j.amc.2022.127637
16. Mittal, U., Chawla, P., & Tiwari, R. (2023). EnsembleNet: A hybrid approach for vehicle detection and estimation of traffic density based on faster R-CNN and YOLO models. Neural Computing and Applications, 35(6), 4755-4774. https://doi.org/10.1007/s00521-022-07940-9
17. Djenouri, Y., Belhadi, A., Srivastava, G., & Lin, J. C. W. (2023). Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Future Generation Computer Systems, 139, 100-108. https://doi.org/10.1016/j.future.2022.09.018
18. Xu, X., Jin, X., Xiao, D., Ma, C., & Wong, S. C. (2023). A hybrid autoregressive fractionally integrated moving average and nonlinear autoregressive neural network model for short-term traffic flow prediction. Journal of Intelligent Transportation Systems, 27(1), 1-18. https://doi.org/10.1080/15472450.2021.1977639
19. Zhu, Y., Wu, Q. & Xiao, N. (2022). Research on highway traffic flow prediction model and decision-making method. Sci Rep 12, 19919. https://doi.org/10.1038/s41598-022-24469-y
Citations
- Войтов В.А., Кравцов А.Г., Карнаух М.В., Горяїнов О.М., Козенок А.С., Бабич І.А. Оцінка ергономічної стійкості транспортного потоку на дільницях дорожньої мережі. Ідентифікація математичної моделі. Центральноукраїнський науковий вісник. Технічні науки. 2023. Вип. 7(38). С. 236-245 https://doi.org/10.32515/2664-262X.2023.7(38).1.236-245
- Обгрунтування критерію стійкості транспортного потоку на дільницях дорожньої мережі. / А.Г. Кравцов та ін. Центральноукраїнський науковий вісник. Технічні науки. 2023. Вип. 7(38). С. 222-230 https://doi.org/10.32515/2664-262X.2023.7(38).2.222-230
- Dorokhin S., Artemov A., Likhachev D., Novikov A., Starkov E. Traffic simulation: an analytical review. In IOP Conference Series: Materials Science and Engineering. 2020. Vol. 918. No. 1, p. 012058. IOP Publishing. DOI 10.1088/1757-899X/918/1/012058
- Nagatani T. Macroscopic traffic flow in multiple-loop networks. Physica A: Statistical Mechanics and its Applications. 2023. P. 609. 128324. https://doi.org/10.1016/j.physa.2022.128324
- Herty M., Kolbe N. Data-Driven Models for Traffic Flow at Junctions. arXiv preprint arXiv: 2022, 2212.08912. https://doi.org/10.48550/arXiv.2212.08912
- Karafyllis I., Theodosis D., Papageorgiou M. Stability analysis of nonlinear inviscid microscopic and macroscopic traffic flow models of bidirectional cruise-controlled vehicles. IMA Journal of Mathematical Control and Information. 2022. 39(2). P.609-642. https://doi.org/10.1093/imamci/dnac003
- Li L., Ji X., Gan J., Qu X., Ran B. A macroscopic model of heterogeneous traffic flow based on the safety potential field theory. IEEE Access. 2021. 9. P. 7460-7470. https://doi.org/10.1109/ACCESS.2021.3049393
- Imran W., Khan Z. H., Gulliver T. A., Khattak K. S., Nasir H. A macroscopic traffic model for heterogeneous flow. Chinese Journal of Physics, 2020. 63. P.419-435. https://doi.org/10.1016/j.cjph.2019.12.005
- Yuan C., Li Y., Huang H., Wang S., Sun Z., Li Y. Using traffic flow characteristics to predict real-time conflict risk: A novel method for trajectory data analysis. Analytic methods in accident research. 2022. 35. 100217. https://doi.org/10.1016/j.amar.2022.100217
- Das A., Ahmed M. M. Adjustment of key lane change parameters to develop microsimulation models for representative assessment of safety and operational impacts of adverse weather using SHRP2 naturalistic driving data. Journal of safety research. 2022. 8. Pp. 9-20. https://doi.org/10.1016/j.jsr.2022.01.002
- Lazar H. Comparison of microscopic car following models. In 2019 International Conference on Systems of Collaboration Big Data, Internet of Things & Security (SysCoBIoTS). 2019. pp. 1-6. IEEE. DOI:10.1109/SysCoBIoTS48768.2019.9028040
- Feng T., Liu K., Liang C. An Improved Cellular Automata Traffic Flow Model Considering Driving Styles. Sustainability. 2023. 15(2). P. 952. https://doi.org/10.3390/su15020952
- Kušić K., Schumann R., Ivanjko E. A digital twin in transportation: Real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics. Advanced Engineering Informatics. 2023. 55. 101858. https://doi.org/10.3390/su15032050
- Shang X. C., Liu F., Li X. G., Janssens D., Wets G. The Impact of Three Specific Collaborative Merging Strategies on Traffic Flow. Journal of Advanced Transportation. 2023. https://doi.org/10.1155/2023/1375867
- Wen J., Hong L., Dai M., Xiao X., Wu C. A stochastic model for stop-and-go phenomenon in traffic oscillation: On the prospective of macro and micro traffic flow. Applied Mathematics and Computation. 2023. 440. 127637. https://doi.org/10.1016/j.amc.2022.127637
- Mittal U., Chawla P., Tiwari R. EnsembleNet: A hybrid approach for vehicle detection and estimation of traffic density based on faster R-CNN and YOLO models. Neural Computing and Applications. 2023. 35(6). 4755-4774. https://doi.org/10.1007/s00521-022-07940-9
- Djenouri Y., Belhadi A., Srivastava G., Lin J. C. W. Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Future Generation Computer Systems. 2023. 139. Pp. 100-108. https://doi.org/10.1016/j.future.2022.09.018
- Xu X., Jin X., Xiao D., Ma C., Wong S. C. A hybrid autoregressive fractionally integrated moving average and nonlinear autoregressive neural network model for short-term traffic flow prediction. Journal of Intelligent Transportation Systems. 2023. 27(1). 1-18. https://doi.org/10.1080/15472450.2021.1977639
- Zhu Y., Wu Q., Xiao N. Research on highway traffic flow prediction model and decision-making method. Sci Rep. 2022. 12. 19919. https://doi.org/10.1038/s41598-022-24469-y
Copyright (c) 2023 Oleksiy Goryayinov, Anna Kozenok, Nataliia Berezhna, Igor Sysenko, Inna Babych, Olexsiy Voytov
Study of the Mathematical Model of the Stability of the Traffic Flow in the Sections of the Road Network of the City
About the Authors
Oleksiy Goryayinov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Biotechnological University, Kharkiv, Ukraine, e-mail: goryainov@ukr.net, ORCID ID: 0000-0002-5967-2835
Anna Kozenok, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Biotechnological University, Kharkiv, Ukraine, e-mail: anna13kozenok@gmail.comm, ORCID ID: 0000-0002-3152-2253
Nataliia Berezhna, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Biotechnological University, Kharkiv, Ukraine, ORCID ID: 0000-0001-8740-3387
Igor Sysenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Biotechnological University, Kharkiv, Ukraine, e-mail: goryainov@ukr.net, ORCID ID: 0000-0002-5967-2835
Inna Babych, Senior Lecturer, State Biotechnological University, Kharkiv, Ukraine, ORCID ID: 0000-0003-0005-7640
Olexsiy Voytov, Graduate student , State Biotechnological University, Kharkiv, Ukraine, ORCID ID: 0000-0001-8716-2667
Abstract
Keywords
Full Text:
PDFReferences
1. Vojtov, V.A., Kravtsov, A.H., Karnaukh, M.V., Horyayinov, O.M., Kozenok, A.S. & Babych, I.A. (2023). Otsinka erhonomichnoyi stiykosti transportnoho potoku na dilʹnytsyakh dorozhnʹoyi merezhi. Identyfikatsiya matematychnoyi modeli. [Assessment of ergonomic sustainability of traffic flow at road network sections. Identification of a mathematical model], Tsentralʹnoukrayinsʹkyy naukovyy visnyk. Tekhnichni nauky – Central Ukrainian scientific bulletin. Technical Sciences, Vol. 7(38), 236-245. https://doi.org/10.32515/2664-262X.2023.7(38).1.236-245 [in Ukrainian].
2. Kravtsov A.H., Larina T.F., Horyayinov O.M., Kozenok A.S., Horodetsʹka T.E., Babych I.A. (2023) Obhruntuvannya kryteriyu stiykosti transportnoho potoku na dilʹnytsyakh dorozhnʹoyi merezhi. [Justification of the traffic flow stability criterion at the sections of the road network], Tsentralʹnoukrayinsʹkyy naukovyy visnyk. Tekhnichni nauky – Central Ukrainian scientific bulletin. Technical Sciences, Vol. 7(38), 222-239 https://doi.org/10.32515/2664-262X.2023.7(38).2.222-230 [in Ukrainian].
3. Dorokhin, S., Artemov, A., Likhachev, D., Novikov, A., & Starkov, E. (2020, September). Traffic simulation: an analytical review. In IOP Conference Series: Materials Science and Engineering (Vol. 918, No. 1, p. 012058). IOP Publishing. DOI 10.1088/1757-899X/918/1/012058
4. Nagatani, T. (2023). Macroscopic traffic flow in multiple-loop networks. Physica A: Statistical Mechanics and its Applications, 609, 128324. https://doi.org/10.1016/j.physa.2022.128324
5. Herty, M., & Kolbe, N. (2022). Data-Driven Models for Traffic Flow at Junctions. arXiv preprint arXiv:2212.08912. https://doi.org/10.48550/arXiv.2212.08912
6. Karafyllis, I., Theodosis, D., & Papageorgiou, M. (2022). Stability analysis of nonlinear inviscid microscopic and macroscopic traffic flow models of bidirectional cruise-controlled vehicles. IMA Journal of Mathematical Control and Information, 39(2), 609-642. https://doi.org/10.1093/imamci/dnac003
7. Li, L., Ji, X., Gan, J., Qu, X., & Ran, B. (2021). A macroscopic model of heterogeneous traffic flow based on the safety potential field theory. IEEE Access, 9, 7460-7470. https://doi.org/10.1109/ACCESS.2021.3049393
8. Imran, W., Khan, Z. H., Gulliver, T. A., Khattak, K. S., & Nasir, H. (2020). A macroscopic traffic model for heterogeneous flow. Chinese Journal of Physics, 63, 419-435. https://doi.org/10.1016/j.cjph.2019.12.005
9. Yuan, C., Li, Y., Huang, H., Wang, S., Sun, Z., & Li, Y. (2022). Using traffic flow characteristics to predict real-time conflict risk: A novel method for trajectory data analysis. Analytic methods in accident research, 35, 100217. https://doi.org/10.1016/j.amar.2022.100217
10. Das, A., & Ahmed, M.M. (2022). Adjustment of key lane change parameters to develop microsimulation models for representative assessment of safety and operational impacts of adverse weather using SHRP2 naturalistic driving data. Journal of safety research, 81, 9-20. https://doi.org/10.1016/j.jsr.2022.01.002
11. Lazar H. (2019). Comparison of microscopic car following models. In 2019 International Conference on Systems of Collaboration Big Data, Internet of Things & Security (SysCoBIoTS) (pp. 1-6). IEEE. DOI:10.1109/SysCoBIoTS48768.2019.9028040
12. Feng, T., Liu, K., & Liang, C. (2023). An Improved Cellular Automata Traffic Flow Model Considering Driving Styles. Sustainability, 15(2), 952. https://doi.org/10.3390/su15020952
13. Kušić, K., Schumann, R., & Ivanjko, E. (2023). A digital twin in transportation: Real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics. Advanced Engineering Informatics, 55, 101858. https://doi.org/10.3390/su15032050
14. Shang, X. C., Liu, F., Li, X. G., Janssens, D., & Wets, G. (2023). The Impact of Three Specific Collaborative Merging Strategies on Traffic Flow. Journal of Advanced Transportation, 2023. https://doi.org/10.1155/2023/1375867
15. Wen, J., Hong, L., Dai, M., Xiao, X., & Wu, C. (2023). A stochastic model for stop-and-go phenomenon in traffic oscillation: On the prospective of macro and micro traffic flow. Applied Mathematics and Computation, 440, 127637. https://doi.org/10.1016/j.amc.2022.127637
16. Mittal, U., Chawla, P., & Tiwari, R. (2023). EnsembleNet: A hybrid approach for vehicle detection and estimation of traffic density based on faster R-CNN and YOLO models. Neural Computing and Applications, 35(6), 4755-4774. https://doi.org/10.1007/s00521-022-07940-9
17. Djenouri, Y., Belhadi, A., Srivastava, G., & Lin, J. C. W. (2023). Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Future Generation Computer Systems, 139, 100-108. https://doi.org/10.1016/j.future.2022.09.018
18. Xu, X., Jin, X., Xiao, D., Ma, C., & Wong, S. C. (2023). A hybrid autoregressive fractionally integrated moving average and nonlinear autoregressive neural network model for short-term traffic flow prediction. Journal of Intelligent Transportation Systems, 27(1), 1-18. https://doi.org/10.1080/15472450.2021.1977639
19. Zhu, Y., Wu, Q. & Xiao, N. (2022). Research on highway traffic flow prediction model and decision-making method. Sci Rep 12, 19919. https://doi.org/10.1038/s41598-022-24469-y
Citations
- Войтов В.А., Кравцов А.Г., Карнаух М.В., Горяїнов О.М., Козенок А.С., Бабич І.А. Оцінка ергономічної стійкості транспортного потоку на дільницях дорожньої мережі. Ідентифікація математичної моделі. Центральноукраїнський науковий вісник. Технічні науки. 2023. Вип. 7(38). С. 236-245 https://doi.org/10.32515/2664-262X.2023.7(38).1.236-245
- Обгрунтування критерію стійкості транспортного потоку на дільницях дорожньої мережі. / А.Г. Кравцов та ін. Центральноукраїнський науковий вісник. Технічні науки. 2023. Вип. 7(38). С. 222-230 https://doi.org/10.32515/2664-262X.2023.7(38).2.222-230
- Dorokhin S., Artemov A., Likhachev D., Novikov A., Starkov E. Traffic simulation: an analytical review. In IOP Conference Series: Materials Science and Engineering. 2020. Vol. 918. No. 1, p. 012058. IOP Publishing. DOI 10.1088/1757-899X/918/1/012058
- Nagatani T. Macroscopic traffic flow in multiple-loop networks. Physica A: Statistical Mechanics and its Applications. 2023. P. 609. 128324. https://doi.org/10.1016/j.physa.2022.128324
- Herty M., Kolbe N. Data-Driven Models for Traffic Flow at Junctions. arXiv preprint arXiv: 2022, 2212.08912. https://doi.org/10.48550/arXiv.2212.08912
- Karafyllis I., Theodosis D., Papageorgiou M. Stability analysis of nonlinear inviscid microscopic and macroscopic traffic flow models of bidirectional cruise-controlled vehicles. IMA Journal of Mathematical Control and Information. 2022. 39(2). P.609-642. https://doi.org/10.1093/imamci/dnac003
- Li L., Ji X., Gan J., Qu X., Ran B. A macroscopic model of heterogeneous traffic flow based on the safety potential field theory. IEEE Access. 2021. 9. P. 7460-7470. https://doi.org/10.1109/ACCESS.2021.3049393
- Imran W., Khan Z. H., Gulliver T. A., Khattak K. S., Nasir H. A macroscopic traffic model for heterogeneous flow. Chinese Journal of Physics, 2020. 63. P.419-435. https://doi.org/10.1016/j.cjph.2019.12.005
- Yuan C., Li Y., Huang H., Wang S., Sun Z., Li Y. Using traffic flow characteristics to predict real-time conflict risk: A novel method for trajectory data analysis. Analytic methods in accident research. 2022. 35. 100217. https://doi.org/10.1016/j.amar.2022.100217
- Das A., Ahmed M. M. Adjustment of key lane change parameters to develop microsimulation models for representative assessment of safety and operational impacts of adverse weather using SHRP2 naturalistic driving data. Journal of safety research. 2022. 8. Pp. 9-20. https://doi.org/10.1016/j.jsr.2022.01.002
- Lazar H. Comparison of microscopic car following models. In 2019 International Conference on Systems of Collaboration Big Data, Internet of Things & Security (SysCoBIoTS). 2019. pp. 1-6. IEEE. DOI:10.1109/SysCoBIoTS48768.2019.9028040
- Feng T., Liu K., Liang C. An Improved Cellular Automata Traffic Flow Model Considering Driving Styles. Sustainability. 2023. 15(2). P. 952. https://doi.org/10.3390/su15020952
- Kušić K., Schumann R., Ivanjko E. A digital twin in transportation: Real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics. Advanced Engineering Informatics. 2023. 55. 101858. https://doi.org/10.3390/su15032050
- Shang X. C., Liu F., Li X. G., Janssens D., Wets G. The Impact of Three Specific Collaborative Merging Strategies on Traffic Flow. Journal of Advanced Transportation. 2023. https://doi.org/10.1155/2023/1375867
- Wen J., Hong L., Dai M., Xiao X., Wu C. A stochastic model for stop-and-go phenomenon in traffic oscillation: On the prospective of macro and micro traffic flow. Applied Mathematics and Computation. 2023. 440. 127637. https://doi.org/10.1016/j.amc.2022.127637
- Mittal U., Chawla P., Tiwari R. EnsembleNet: A hybrid approach for vehicle detection and estimation of traffic density based on faster R-CNN and YOLO models. Neural Computing and Applications. 2023. 35(6). 4755-4774. https://doi.org/10.1007/s00521-022-07940-9
- Djenouri Y., Belhadi A., Srivastava G., Lin J. C. W. Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Future Generation Computer Systems. 2023. 139. Pp. 100-108. https://doi.org/10.1016/j.future.2022.09.018
- Xu X., Jin X., Xiao D., Ma C., Wong S. C. A hybrid autoregressive fractionally integrated moving average and nonlinear autoregressive neural network model for short-term traffic flow prediction. Journal of Intelligent Transportation Systems. 2023. 27(1). 1-18. https://doi.org/10.1080/15472450.2021.1977639
- Zhu Y., Wu Q., Xiao N. Research on highway traffic flow prediction model and decision-making method. Sci Rep. 2022. 12. 19919. https://doi.org/10.1038/s41598-022-24469-y