DOI: https://doi.org/10.32515/2664-262X.2023.8(39).1.37-47

Justification of the Parameters of Regular Microreliefs Formed on Flat Surfaces

Volodymyr Dzyura, Petro Maruschak, Volodymyr Semehen, Volodymyr Holovko, Vasyl Fediv

About the Authors

ВVolodymyr Dzyura, Professor, Doctor in Technics (Doctor of Technic Sciences), Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, Україна, e-mail: ds@tu.edu.te.ua, ORCID ID: 0000-0002-1801-2419

Petro Maruschak, Professor, Doctor in Technics (Doctor of Technic Sciences), Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, ORCID ID: 0000-0002-3001-0512

Volodymyr Semehen, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

Volodymyr Holovko, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

Vasyl Fediv, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

Abstract

The task of the article is to establish the influence of the technological parameters of the process of forming regular microrelief formed on flat surfaces on the relative area of vibration rolling and, accordingly, the operational properties of this surface. The technological features of the formation of a regular microrelief of the 1st type on flat surfaces by the method of vibration rolling with a vibrating head with ball rollers are considered. An analytical dependence was obtained for determining the path that the vibratory run-in will take in a quarter of a spindle revolution under the given modes of microrelief formation. Analytical dependences were obtained for determining the relative area of the vibro-rolled surface for relief with parallel grooves formed on flat surfaces. The conditions for the formation of microrelief have been established, depending on the geometric parameters of the microrelief and the technological modes of its formation. Graphs of the dependence of the relative area of vibration rolling Fв on the longitudinal feed of the tool, Sпз and on the frequency ndv.x. oscillations of the rolling elements, as well as graphs of the relative area of vibration rolling Fв from the pitch of the groove tk.

Keywords

flat surfaces, regular microrelief, geometric parameters, vibration rolling, analytical dependencies, forming conditions

Full Text:

PDF

References

1. Tomanik, E., El Mansori, M., Souza, R. & Profito, F. (2018). Effect of waviness and roughness on cylinder liner friction. Tribology International, 120, pp. 547-555 [in English].

2. Grützmacher, P.G., Profito, F.J. & Rosenkranz, A. (2019). Multi-Scale Surface Texturing in Tribology —Current Knowledge and Future Perspectives. 7(11), 95. https://doi.org/10.3390/lubricants7110095 [in English].

3. Surfaces with Regular Microshape. Classification, Parameters and Characteristics (1988). GOST 24773-81. Moscow: Izdatelstvo Standartov [in English].

4. Mezghani, S., Demirci, I., Zahouani, H. & El Mansori, M. (2012). The effect of groove texture patterns on piston-ring pack friction. Precis. Eng. 36, 210–217 [in English].

5. Pawlus, P., Reizer, R. & Wieczorowski, M. (2019). Reverse Problem in Surface Texture Analysis—One-Process Profile Modeling on the Basis of Measured Two-Process Profile after Machining or Wear. Materials, 12(24), 4169; https://doi.org/10.3390/ma12244169 [in English].

6. Nanbu, T., Ren, N., Yasuda, Y. et al. (2008). Micro-Textures in Concentrated Conformal-Contact Lubrication: Effects of Texture Bottom Shape and Surface Relative Motion. Tribol Lett 29, 241–252 https://doi.org/10.1007/s11249-008-9302-9 [in English].

7. Schneider, Y.G. (1982). Service Properties of Parts with Regular Microrelief, 2nd ed. (revised and augmented, in Russian) 253 . Leningrad: Mashinostroenie [in English].

8. Pawlus, P., Reizer, R. & Wieczorowski, M. (2019). Reverse problem in surface texture analysis—one-process profile modeling on the basis of measured two-process profile after machining or wear. Materials, 12(24), 4169doi:10.3390/ma12244169 [in English].

9. T. Nanbu, N. Ren, Y. Yasuda, et al., (2008). Micro-textures in concentrated conformal-contact lubrication: effects of texture bottom shape and surface relative motion. Tribol. Lett. 29, 241-252, doi:10.1007/s11249-008-9302-9 [in English].

10. Aftanaziv, I.S., Kyrychok P.O. & Melnychuk, P.P. (2001). Improving the reliability of machine parts by surface plastic deformation. Zhytomyr, ZhTI Publishing, 516 p. [in Ukrainian].

11. Nagit, G., Slatineanu, L., Dodun, O., Ripanu, M. & Mihalache, A. (2019). Surface layer microhardness and roughness after applying a vibroburnishing process. Journal of Materials Research and Technology. 8. 10.1016/j.jmrt.2019.07.044 [in English].

12. Dzyura, V., Maruschak, P., Kozbur, H., Kryvyi, P., & Prentkovskis, O., (2021). Determining optimal parameters of grooves of partially regular microrelief formed on end faces of rotary bodies. Smart and Sustainable Manufacturing Systems, Vol. 5(1), P. 18-29, DOI:10.1520/SSMS20200057 [in English].

13. Dzyura, V., Maruschak, P., Kuchvara I. & Tkachenko I. (2021). Ensuring a stable relative area of burnishing of partially regular microrelief formed on end surfaces of rotary bodies. Strojnícky časopis-Journal of Mechanical Engineering, Vol. 71, No 1, 41 – 50 [in English].

14. Slavov, S., Dimitrov, D. & Iliev, I. (2020). Variability of regular relief cells formed on complex functional surfaces by simultaneous five-axis ball burnishing. UPB Scientific Bulletin, Series D: Mechanical Engineering, 82(3), pp. 195-206 [in English].

15. Slavov, S. & Iliev, I. (2016). Design and FEM static analysis of an instrument for surface plastic deformation of non-planar functional surfaces of machine parts, Fiability & Durability, ISSN 1844 – 640X, , Nov 1(2) [in English].

17. Dzyura, V., Maruschak, P., Slavov, S., Dimitrov, D. & Vasileva, D. (2021). Experimental research of partial regular microreliefs formed on rotary body face surfaces. Aviation, 25(4), 268-277. https://doi.org/10.3846/aviation.2021.15889 [in English].

Citations

  1. Tomanik E., El Mansori M., Souza R., Profito F. Effect of waviness and roughness on cylinder liner friction. Tribology International, 2018. 120. pp. 547-555.
  2. Grützmacher, P.G.; Profito, F.J.; Rosenkranz, A. Multi-Scale Surface Texturing in Tribology—Current Knowledge and Future Perspectives. Lubricants Lubricants. 2019. 7(11), 95; https://doi.org/10.3390/lubricants7110095.
  3. Surfaces with Regular Microshape. Classification, Parameters and Characteristics, GOST 24773-81 (Moscow: Izdatelstvo Standartov, 1988).
  4. Mezghani, S.; Demirci, I.; Zahouani, H.; El Mansori, M. The effect of groove texture patterns on piston-ring pack friction. Precis. Eng. 2012, 36, 210–217.
  5. Pawlus, P.; Reizer, R.; Wieczorowski, M. Reverse Problem in Surface Texture Analysis—One-Process Profile Modeling on the Basis of Measured Two-Process Profile after Machining or Wear. Materials. 2019. 12(24), 4169; https://doi.org/10.3390/ma12244169.
  6. Nanbu, T., Ren, N., Yasuda, Y. et al. Micro-Textures in Concentrated Conformal-Contact Lubrication: Effects of Texture Bottom Shape and Surface Relative Motion. Tribol Lett 29, 241–252 (2008). https://doi.org/10.1007/s11249-008-9302-9
  7. Y. G. Schneider, Service Properties of Parts with Regular Microrelief, 2nd ed. (revised and augmented, in Russian) 253 (Leningrad: Mashinostroenie, 1982).
  8. P. Pawlus, R. Reizer, M. Wieczorowski, “Reverse problem in surface texture analysis—one-process profile modeling on the basis of measured two-process profile after machining or wear,” Materials 12(24), 4169 (2019); doi:10.3390/ma12244169.
  9. T. Nanbu, N. Ren, Y. Yasuda, et al., “Micro-textures in concentrated conformal-contact lubrication: effects of texture bottom shape and surface relative motion,” Tribol. Lett. 29, (2008): 241-252, doi:10.1007/s11249-008-9302-9.
  10. Aftanaziv, I.S.; Kyrychok P.O.; Melnychuk, P.P. Improving the reliability of machine parts by surface plastic deformation. Zhytomyr: ZhTI Publishing, 2001, 516 p.
  11. Nagit G., Slatineanu L., Dodun O., Ripanu M., Mihalache A. (2019). Surface layer microhardness and roughness after applying a vibroburnishing process. Journal of Materials Research and Technology. 8. 10.1016/j.jmrt.2019.07.044.
  12. Dzyura V., Maruschak P., Kozbur H., Kryvyi P., and Prentkovskis O., Determining optimal parameters of grooves of partially regular microrelief formed on end faces of rotary bodies. Smart and Sustainable Manufacturing Systems, 2021, Vol. 5(1), P. 18-29, DOI:10.1520/SSMS20200057.
  13. Dzyura, V., Maruschak, P., Kuchvara I., Tkachenko I. Ensuring a stable relative area of burnishing of partially regular microrelief formed on end surfaces of rotary bodies. Strojnícky časopis-Journal of Mechanical Engineering, 2021. VOL 71 (2021), NO 1, 41 – 50.
  14. S. Slavov , D. Dimitrov, I. Iliev. “Variability of regular relief cells formed on complex functional surfaces by simultaneous five-axis ball burnishing,” UPB Scientific Bulletin, Series D: Mechanical Engineering, 2020, 82(3), pp. 195-206.
  15. S. Slavov, I. Iliev, Design and FEM static analysis of an instrument for surface plastic deformation of non-planar functional surfaces of machine parts, Fiability & Durability, ISSN 1844 – 640X, 2016, Nov 1(2).
  16. Dzyura, V., Maruschak, P., Slavov, S., Dimitrov, D., Vasileva, D. Experimental research of partial regular microreliefs formed on rotary body face surfaces. Aviation, 2021, 25(4), 268-277. https://doi.org/10.3846/aviation.2021.15889.
Copyright (c) 2023 Volodymyr Dzyura, Petro Maruschak, Volodymyr Semehen, Volodymyr Holovko, Vasyl Fediv