DOI: https://doi.org/10.32515/2664-262X.2023.7(38).2.123-129

Optimization of Microclimate Parameters in Educational Institutions with air Local Recovery Systems

Ivan Savelenko, Kateryna Petrova, Andrii Kotysh, Oleksandr Sirikov

About the Authors

І.В. Савеленко, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: ivan.savelenko@gmail.com, ORCID ID: 0000-0002-0078-5755

К.Г. Петрова, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kateflash27@gmail.com, ORCID ID: 0000-0002-1928-6833

А.І. Котиш, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: akotysh@gmail.com, ORCID ID: 0000-0002-4938-5234

О.І. Сіріков, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: asirikov@i.ua, ORCID ID: 0000-0002-7058-2697

Abstract

The aim is to develop an automatic local air recovery system to ensure thermal comfort and the normative composition of the air environment in educational institution premises. Improving the efficiency of local air recovery systems while maintaining optimal microclimate parameters is possible through the enhancement of automatic control systems for local recovery devices. An automatic air local recovery control system has been developed, which guarantees optimal microclimate parameters in educational institution premises. Computer simulation modeling has been applied to control the microclimate system based on temperature and CO2 concentration. The advantages of the proposed system have been identified, which reduced the duration of exceeding the maximum allowable level of CO2 concentration by 49.5% and decreased the CO2 concentration by 13.1% within the specified temperature limits.

Keywords

local air recovery, microclimate, automatic control system, air quality

Full Text:

PDF

References

1. Sukach, S.V. & Kozlovska, T.F. (2016). Otsiniuvannia vplyvu mikroklimatu navchalnykh prymishchen na rozumovu pratsezdatnist studentiv [Evaluation of the influence of the microclimate of educational premises on the mental capacity of students]. Problemy okhorony pratsi v Ukraini – Problems of labor protection in Ukraine, Issue 31, 105-112 [in Ukrainian].

2. Waheed, A. & Tariq, M. (2019). The Impact of Renewable Energy on Carbon Dioxide Emissions: An Empirical Analysis of Selected South Asian Countries . Ukrainian Journal of Ecology, 9(4), pp. 527-534. DOI: 10.15421/2019_785 [in English].

3. Ivasenko, V.M. & Hanchev, B.S. (2018). Vymiriuvannia dioksydu vuhletsiu v prymishchenni hromadskykh, zhytlovykh ta ofisnykh budivel [Measurement of carbon dioxide in the premises of public, residential and office buildings]. Scientific Journal «ScienceRise» – , 7(48), 38-41 [in Ukrainian].

4. Budinki і sporudi. Zakladi osvіti. (2018). DBN V.2.2-3:2018. Kiїv: Mіnіsterstvo regіonal'nogo rozvitku, budіvnictva ta zhitlovo-komunal'nogo gospodarstva Ukraїni (Derzhavnі budіvel'nі normi Ukraїni) [in Ukrainian].

5. Cao, G., Awbi, H., Yao, R., Fan, Y., Sirén, K., Kosonen, R. & Zhang, J. (Jensen). (2014). A review of the performance of different ventilation and airflow distribution systems in buildings . Building and Environment, Vol. 73, P. 171–186. doi: https://doi.org/10.1016/j.buildenv.2013.12.009 [in English].

6. Chenari, B., Dias Carrilho, J. & Gameiro da Silva, M. (2016). Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review . Renewable and Sustainable Energy Reviews, Vol. 59, P. 1426–1447. doi: https://doi.org/10.1016/j.rser.2016.01.074 [in English].

7. Lei Z., Liu C., Wang L. & Li N. (2017). Effect of natural ventilation on indoor air quality and thermal comfort in dormitory during winter . Building and Environment, Vol. 125, P. 240–247. doi: https://doi.org/10.1016/j.buildenv.2017.08.051 [in English].

8. Cheng, Z., Li, L. & Bahnfleth, W.P. (2016). Natural ventilation potential for gymnasia – Case study of ventilation and comfort in a multisport facility in northeastern United States . Building and Environment, Vol. 108, P. 85–98. doi: https://doi.org/10.1016/j.buildenv.2016.08.019 [in English].

9. Panaras, G., Markogiannaki, M., Tolis, E.I., Sakellaris, Y. & Bartzis, J.G. (2018). Experimental and theoretical investigation of air exchange rate of an indoor aquatic center . Sustainable Cities and Society, Vol. 39, P. 126–134. doi: https://doi.org/10.1016/j.scs.2018.02.012 [in English].

10. He, M., Zheng, J. & Liu, Z. (2014). Study on indoor thermal environment under winter air-conditioning condition in one university students' dormitory in Chongqing . Refrigeration and Air-conditioning, 14, P. 89–93 [in English].

11. Avramenko, M.M., Sukach, S.V. & Kobylianskyi, M.A. (2010). Pidtrymka parametriv mikroklimatu v normatyvnykh mezhakh yak zasib stvorennia komfortnykh umov pratsi [Maintaining microclimate parameters within regulatory limits as a means of creating comfortable working conditions]. Elektromekhanichni i enerhozberihaiuchi systemy: shchokvartalnyi naukovo-vyrobnychyi zhurnal – Electromechanical and energy-saving systems: a quarterly scientific and industrial journal, Vyp. 4(12), 94–99 [in Ukrainian].

12. Zinzura, V.V. (2012). Metody rozviazku zadachi bahatokryterialnoi optymizatsii rehuliuvannia napruhy v elektrychnykh merezhakh [Methods of solving the problem of multi-criteria optimization of voltage regulation in electric networks.] . Tekhnika v silskohospodarskomu vyrobnytstvi, haluzeve mashynobuduvannia, avtomatyzatsiia : zb. nauk. prats KNTU – Machinery in Agricultural Production, Industry Machine Building, Automation : Coll. Works of KNTU, Issue 25, part. 1, 350-360 [in Ukrainian].

Citations

  1. Сукач С.В., Козловська Т. Ф. Оцінювання впливу мікроклімату навчальних приміщень на розумову працездатність студентів . Проблеми охорони праці в Україні. 2016. Вип. 31. С. 105-112.
  2. Waheed A., Tariq M. The Impact of Renewable Energy on Carbon Dioxide Emissions: An Empirical Analysis of Selected South Asian Countries . Ukrainian Journal of Ecology. 2019. 9(4). Рр. 527-534. DOI: 10.15421/2019_785.
  3. Івасенко В.М., Ганчев Б.С. Вимірювання діоксиду вуглецю в приміщенні громадських, житлових та офісних будівель . ScienceRise : Scientific Journal. 2018. №7(48). С. 38-41.
  4. ДБН В.2.2-3:2018. Будинки і споруди. Заклади освіти. Київ: Міністерство регіонального розвитку, будівництва та житлово-комунального господарства України, 2018. 57 с. (Державні будівельні норми України).
  5. A review of the performance of different ventilation and airflow distribution systems in buildings / Cao G., Awbi H., Yao R., Fan Y., Sirén K., Kosonen R., Zhang J. (Jensen) . Building and Environment. 2014. Vol. 73. P. 171–186. doi: https://doi.org/10.1016/j.buildenv.2013.12.009
  6. Chenari B., Dias Carrilho J., Gameiro da Silva M. Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review . Renewable and Sustainable Energy Reviews. 2016. Vol. 59. P. 1426–1447. doi: https://doi.org/10.1016/j.rser.2016.01.074
  7. Effect of natural ventilation on indoor air quality and thermal comfort in dormitory during winter / Lei Z., Liu C., Wang L., Li N. Building and Environment. 2017. Vol. 125. P. 240–247. doi: https://doi.org/10.1016/j.buildenv.2017.08.051
  8. Cheng Z., Li L., Bahnfleth W. P. Natural ventilation potential for gymnasia – Case study of ventilation and comfort in a multisport facility in northeastern United States . Building and Environment. 2016. Vol. 108. P. 85–98. doi: https://doi.org/10.1016/j.buildenv.2016.08.019
  9. Experimental and theoretical investigation of air exchange rate of an indoor aquatic center / Panaras G., Markogiannaki M., Tolis E. I., Sakellaris Y., Bartzis J. G. . Sustainable Cities and Society. 2018. Vol. 39. P. 126–134. doi: ttps://doi.org/10.1016/j.scs.2018.02.012
  10. M. He, J. Zheng, Z. Liu. Study on indoor thermal environment under winter air-conditioning condition in one university students' dormitory in Chongqing . Refrigeration and Air-conditioning. 2014. № 14 P. 89–93.
  11. Авраменко М.М., Сукач С.В., Кобилянський М.А. Підтримка параметрів мікроклімату в нормативних межах як засіб створення комфортних умов праці . Електромеханічні і енергозберігаючі системи: щоквартальний науково-виробничий журнал. 2010. Вип. 4/2010 (12). С. 94–99.
  12. Зінзура В. В. Методи розв’язку задачі багатокритеріальної оптимізації регулювання напруги в електричних мережах . Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація : зб. наук. праць Кіровоградського нац. техн. у-ту . 2012. Вип. 25, Ч. 1. С. 350-360.
Copyright (c) 2023 Ivan Savelenko, Kateryna Petrova, Andrii Kotysh, Oleksandr Sirikov