DOI: https://doi.org/10.32515/2664-262X.2023.7(38).2.237-243

The Hybrid Structures of Beams on Transport Using Metal

Ihor Kuziev

About the Authors

Ihor Kuziev, Senior Lecturer, Cherkassy State Technological University, Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine, e-mail: Igor-kuzev@ukr.net, ORCID ID: 0000-0002-3403-7069

Abstract

To analyze the future use of hybrid and combined structures for floors of buildings and structures for civil and industrial purposes, including in transport, to expand the range of beam structures, to develop an innovative design solution for a hybrid beam with low material consumption with increased reliability and durability of the structure. Analysis of the advantages of hybrid structures, materials used for their design, calculation of a metal-composite beam using existing engineering methods according to STO “Strengthening steel structures with composite materials. Design and production technology of works ”and numerical methods of calculation with the involvement of calculation programs. The advantages of hybrid and combined structures were revealed, a decrease in the material consumption of a metal-composite beam reinforced with boroplastic was revealed in comparison with a steel one. The proposed constructive solution of the beam can be used in floors and roofs of buildings and structures, transport facilities, especially in aggressive environments, as well as in the overhaul and reconstruction of industrial and civil facilities. New developments of beams using steel concrete and composite materials for designed and reinforced structures are presented. An innovative design of a metal-composite beam was developed - a steel beam reinforced with an external reinforcement system made of a composite material, protected by a utility model patent, its static and structural calculation was performed using the SCAD computer complex, the stress-strain state was analyzed, an analysis was made of reducing the consumption of steel of a metal-composite beam and others. its advantages over traditional steel and reinforced concrete beam solutions.

Keywords

construction, hybrid construction, floor beam, numerical calculation, reliability, durability

Full Text:

PDF

References

1. Dragobetskii, V. & Shapova, A. (2015). Excavator bucket teeth strengthening using a plastic explosive deformation. Metallurgical and Mining Industry. P. 363-368 [in English].

2. Markov, O., Gerasimenko, O., Aliieva, L. & Shapova,l A. (2019). Development of the metal rheology model of high-temperature deformation for modeling by finite element method. EUREKA: Physics and Engineering. P.52-60 [in English].

3. Dragobetskii, V., Zagirnyak, M., Naumova, O., Shlyk, S. & Shapoval, A. (2018). Method of determination of technological durability of plastically deformed sheet parts of vehicles. International Journal of Engineering and Technology. P.92-99 [in English].

4. Vorobyov, V., Pomazan, M. & Vorobyova, L. (2017). Simulation of dynamic fracture of the borehole bottom taking into consideration stress concentrator. Eastern European journal of advanced technologies. P.53-62 [in English].

5. Dragobetsky, V.G., Kuzev, I.O. & Moloshtan, D.V. (2022). Morphological analysis of technologies for the repair of bodywork and facing parts of ground freight transport [Morphological analysis of technologies for the repair of bodywork and facing parts of ground freight transport]. Bulletin of Mykhailo Ostrogradsky National University of Kremenchug – Bulletin of Mykhailo Ostrogradsky National University of Kremenchug, Issue 1(132), 157-164 [in Ukrainian].

6. Kuziev, I. & Maloshtan, D. (2021). Method for calculation and selection of optimal modes of the explosion clading of flat compositions. Norwegian Journal of development of the International Science No 57, P.27-33 [in English].

7. Ostroverkh B.M. et al. (2011). Chyselni doslidzhennia napruzhenoho stanu ta nezvorotnykh deformatsii gruntovykh struktur [Numerical studies of stress and irreversible deformations of soil structures]. Stroitelʹnye konstrukcii, 75, part 2, 453-461 [in Ukrainian].

8. Foti, S. (2014). Geophysical Methods for Geotechnical Site Characterization.Surface Wave methods. Geo-Congress. Geo-Characterization and Modelling for Sustainability Short Course – 23rd of February 2014 [in English].

9. Demirdzic and S. Muzaferija. (1995). Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Computer Methods in Applied Mechanics and Engineering, 125 (1-4), p. 235-255 [in English].

10. Cardiff, Ph. (2016). Introduction to Solid Mechanics with OpenFOAM: Basic Training. Retrieved from https:// www.researchgate.net/publication/305618769 [in English].

11. Borecka, A., Herzig, J. & Durjasz-Rybacka, M. (2015). Ground penetrating radar investigations of landslides. A case study in a landslite in radziszow. Studia Geotechnica et Mechanica, Vol. 37, No. 3, DOI: 10.1515/sgem-2015-0028 [in English].

12. Dragobetskyi, V.V., Shchetynin, V.T., Kuzev, I.O. & Moloshtan, D.M. (2020). Evrystychni pryjomy poshuku tekhnichnykh rishen' vidnovlennia detalej z nanostukrurnykh materialiv [Heuristic techniques for finding technical solutions for the restoration of parts from nanostructured materials]. Visnyk Kremenchuts'koho natsional'noho universytetu imeni Mykhajla Ostrohrads'koho – Bulletin of Mykhailo Ostrogradsky National University of Kremenchug. Vol. 2/ (121), 116–121. DOI: 10.30929/1995-0519.2020.2.116-121 [in Ukrainian].

13. Pat. 148165 Ukraine: IPC B21D 5/02 (2006.01) B21D 11/02 (2006.01). Sposib hnuttia lystovykh detalej [The method of bending sheet parts]. No. u 2021 00439; statement February 05, 2021; published July 15, 2021, Bul. No. 28 [in Ukrainian].

14. Pat. 151090 Ukraine: IPC F41H5/04 (2006.01) F41H5/08 (2006.01). Zakhysnyj sharuvatyj element [Protective layered element]. No. u 2021 07716; statement December 28, 2021; published June 02, 2022, Bul. No. 22. [in Ukrainian].

15. Pat. 151963 Ukraine: IPC B21D11/02 (2006.01). Sposib hnuttia profil'nykh zahotovok [Method of bending profile blanks]. No. u 2022 01537; statement 11.05.2022; publ. 06.10.2022, Bull. No. 40 [in Ukrainian].

Citations

  1. Dragobetskii V., Shapoval A. Excavator bucket teeth strengthening using a plastic explosive deformation. Metallurgical and Mining Industry. 2015. P. 363-368
  2. Markov O., Gerasimenko O., Aliieva L., Shapoval A.. Development of the metal rheology model of high-temperature deformation for modeling by finite element method. EUREKA: Physics and Engineering. 2019. P.52-60
  3. Dragobetskii V., Zagirnyak M., Naumova O., Shlyk S., Shapoval A. Method of determination of technological durability of plastically deformed sheet parts of vehicles. International Journal of Engineering and Technology. 2018. P.92-99.
  4. Vorobyov V., Pomazan M., Vorobyova L. Simulation of dynamic fracture of the borehole bottom taking into consideration stress concentrator. Eastern European journal of advanced technologies. 2017. P.53-62.
  5. Драгобецький В.Г., Кузєв І.О., Молоштан Д.В. Морфологічний аналіз технологій ремонту кузовних і облицювальних деталей наземного вантажного транспорту. Вісник Кременчуцького національного університету імені Михайла Остроградського. 2022. Вип. 1 (132) . С. 157-164.
  6. Kuziev I., Maloshtan D. Method for calculation and selection of optimal modes of the explosion clading of flat compositions. Norwegian Journal of development of the International Science. 2021. No 57/2021. P. 27-33.
  7. Островерх Б.М. та ін. Чисельні дослідження напруженого стану та незворотних деформацій ґрунтових структур. Будівельні конструкції. Механіка ґрунтів, геотехніка,фундаментобудування. 2011. № 75, т. 2. С. 453-461.
  8. Foti S. Geophysical Methods for Geotechnical Site Characterization.Surface Wave methods. Geo-Congress. Geo-Characterization and Modelling for Sustainability Short Course – 23rd of February 2014.
  9. Demirdzic and S. Muzaferija. Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Computer Methods in Applied Mechanics and Engineering. 1995. 125 (1-4). P. 235-255.
  10. Cardiff Ph. Introduction to Solid Mechanics with OpenFOAM: Basic Training 2016. 111 p. URL: https:// www.researchgate.net/publication/305618769.
  11. Borecka A., Herzig J., Durjasz-Rybacka M.. Ground penetrating radar investigations of landslides. A case study in a landslite in radziszow. Studia Geotechnica et Mechanica. 2015. Vol. 37, No. 3. DOI: 10.1515/sgem-2015-0028.
  12. Драгобецький В. В., Щетинін В. Т., Кузєв І. О., Молоштан Д. М. Евристичні прийоми пошуку технічних рішень відновлення деталей з наностукрурних матеріалів. Вісник Кременчуцького національного університету імені Михайла Остроградського. 2020. Вип. 2(121). С. 116–121. DOI: 10.30929/1995-0519.2020.2.116-121.
  13. Спосіб гнуття листових деталей : пат. 148165 Україна : МПК В21D 5/02 (2006.01) В21D 11/02 (2006.01). № u 2021 00439; заявл. 05.02.2021; опубл. 15.07.2021, Бюл. № 28.
  14. Захисний шаруватий елемент : пат. 151090 Україна : МПК F41H5/04 (2006.01) F41H5/08 (2006.01). № u 2021 07716; заявл. 28.12.2021; опубл. 02.06.2022, Бюл. № 22.
  15. Спосіб гнуття профільних заготовок : пат.151963 Україна : МПК B21D11/02 (2006.01). № u 2022 01537; заявл. 11.05.2022; опубл.06.10.2022, Бюл. № 40.
Copyright (c) 2023 Ihor Kuziev