DOI: https://doi.org/10.32515/2664-262X.2023.7(38).2.204-212

Experimental Tests of Prestressed Load-Bearing Elements of Fencing Structures Made of Cold-Formed Steel Profiles for Oblique Bending

Olexander Drobotia

About the Authors

Olexander Drobotia, graduate student, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine, e-mail: Sashamailboxxx@gmail.com, ORCID ID: 0000-0002-0288-081X

Abstract

Wall purlins serve as load-bearing elements of the light external wall girders of buildings. Structurally, such wall girders are horizontal beam elements. The external load on the wall girders is the vertical load from the own weight of the wall enclosure and the horizontal wind load. Thus, wall girders work for bending in two planes or the so-called oblique bending. The wide application of elements operating in conditions of oblique bending requires a comprehensive theoretical and experimental study of their operation. The load from the own weight of the wall enclosure, made of light sandwich panels, is approximately equal to the wind load on the territory of Ukraine. Therefore, in this case, the wall girders are designed with equal strength in two planes. To find out the real operation of obliquely bent elements, it is necessary to determine all the parameters that can affect the picture of the destruction of such elements. The purpose of the work is to study experimentally the possibility of applying pre-stressing in one plane of reinforced concrete girders with reduced metal capacity in this plane. The subject of the study is the stress-strain state and bearing capacity of a reinforced concrete rod prestressed in this way. The investigated steel-concrete girders were made of bent channel No. 10 with a wall thickness of 3 mm, the inner cavity of which was filled with concrete of class C20/25. Before concreting the inner cavity, a preliminary bending of the steel profile opposite to the operational one was carried out. The magnitude of the previous bending of the steel profile compensated for its reduced geometric characteristics in this plane. The use of a pre-stressed trough-shaped steel profile in the form of a bent channel No. 10 with a wall thickness of 3 mm for a wall run, followed by its concreting, allows you to reduce steel consumption by up to 38,5% compared to, for example, the use of an 80×3 mm pipe of the same bearing capacity for a run.

Keywords

wall girders, reinforced concrete, pre-stressing, experimental tests, oblique bending

Full Text:

PDF

References

1. Bobalo, T.V. (2012). Porivnyannya rezulʹtativ eksperymentalʹnoho doslidzhennya stalebetonnykh balok iz kombinovanym armuvannyam z rezulʹtatamy rozrakhunku za diyuchymy natsionalʹnymy normamy [Comparison of the results of an experimental study of reinforced concrete beams with combined reinforcement with the results of calculation according to the current national standards]. Arkhitektura i silʹsʹkohospodarsʹke budivnytstvo: Visnyk NAU – Architecture and agricultural construction: Bulletin of NAU, 13, 34-43 [in Ukrainian].

2. Vatulya, H.L., Orel, E.F. (2012). Vplyv parametriv pererizu na nesuchu zdatnistʹ stalebetonnykh konstruktsiy. Haluzeve mashynobuduvannya, budivnytstvo : zb. nauk. pr. – Influence of cross-section parameters on the load-bearing capacity of reinforced concrete structures. Industrial engineering, construction: coll. of science Ave., 3 (33), 30-34 [in Ukrainian].

3. Harʹkava, O.V., Hasenko, A.V. (2017). Vyznachennya mitsnosti zalizobetonnykh kolon pry kosomu stysku [Determination of the strength of reinforced concrete columns under oblique compression]. Nauka ta budivnytstvo - Science and construction, 4 (14), 29-35 [in Ukrainian].

4. Hasenko, A.V., Novytsʹkyy, O.P. & Pents V.F. (2021). Rekonstruktsiya bahatopoverkhovykh promyslovykh budivelʹ pid dostupne zhytlo iz vykorystannyam resursozberezhuvalʹnykh konstruktyvnykh rishenʹ[ Reconstruction of multi-story industrial buildings for affordable housing using resource-saving structural solutions. Coll. of science Ave]. Zb. nauk. pr. Visnyk NUVHP, seriya Tekhnichni nauky – Bulletin of the NUVHP, Technical Sciences series, 2 (94), 27-40. [in Ukrainian]. https://doi.org/10.31713/vt220214

5. Dyachenko, Ye.V. (2006). Rozrakhunok mitsnosti kosozihnutykh zalizobetonnykh elementiv z urakhuvannyam povnoyi diahramy fizychnoho stanu betonu [Calculation of the strength of obliquely bent reinforced concrete elements taking into account the complete diagram of the physical state of concrete]. Candidate's thesis. PNTU imeni Yuriya Kondratyuka, Poltava [in Ukrainian].

6. Kochkarʹov, D.V. (2017). Inzhenerni metody rozrakhunku zalizobetonnykh statychno nevyznachnykh sterzhnevykh system [Engineering methods of calculating reinforced concrete statically indeterminate rod systems]. UkrDUZT : zb. nauk. pr. – UkrDUZT: coll. of scient. papers, 170, 98-104. [in Ukrainian].

7. Al-Kaimakchi, A. & Rambo-Roddenberry, M. (2021). Structural behavior of concrete girders prestressed and reinforced with stainless steel materials. Structures, 35(11) [in English].

8. Pavlikov, A.M., Harkava, О.V., Hasenko, А.V. & Andriiets, К.І. (2019). Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Bulletin of Odessa State Academy of Civil Engineering and Architecture, 77, 84-92 [in English].

9. Pavlikov, A.M., Mykytenko, S.M. & Hasenko, A.V. (2018). Effective structural system for the construction of affordable housing. International Journal of Engineering & Technology: Publisher of International Academic Journals. 7, 3.2, 291-298. [in English]. https://doi.org/10.14419/ijet.v7i3.2.14422

10. Semko, O.V., Hasenko, A.V., Drobotia, O.V., Marchenko, D.P. (2022). Experimental studies of prestressed steel concrete wall girders. Academic journal. Series: Industrial Machine Building, Civil Engineering, 2 (59), 24-32. [in English]. https://doi.org/10.26906/znp.2022.59.2876

11. Wang, C., Shen, Y., Yang, R. & Wen, Z. (2017). Ductility and Ultimate Capacity of Prestressed Steel Reinforced Concrete Beams. Hindawi Mathematical Problems in Engineering, 6, 1467940 [in English]. https://doi.org/10.1155/2017/1467940

Citations

  1. Бобало Т.В. Порівняння результатів експериментального дослідження сталебетонних балок із комбінованим армуванням з результатами розрахунку за діючими національними нормами. Архітектура і сільськогосподарське будівництво: Вісник НАУ. 2012. № 13. С. 34-43.
  2. Ватуля Г.Л., Орел Е.Ф. Вплив параметрів перерізу на несучу здатність сталебетонних конструкцій. Галузеве машинобудування, будівництво : зб. наук. пр. 2012. Вип. 3 (33). С. 30-34.
  3. Гарькава О.В., Гасенко А.В. Визначення міцності залізобетонних колон при косому стиску. Наука та будівництво. 2017. Т.14, № 4. С. 29-35.
  4. Гасенко А.В., Новицький О.П., Пенц В.Ф. Реконструкція багатоповерхових промислових будівель під доступне житло із використанням ресурсозбережувальних конструктивних рішень. Зб. наук. пр. Вісник НУВГП, серія Технічні науки. 2021. № 2 (94). С. 27-40. https://doi.org/10.31713/vt220214
  5. Дяченко Є.В. Розрахунок міцності косозігнутих залізобетонних елементів з урахуванням повної діаграми фізичного стану бетону: дис. … канд. техн. наук: спец. 05.23.01 / ПНТУ імені Юрія Кондратюка, Полтава. 2006. 159 с.
  6. Кочкарьов, Д. В. (2017). Інженерні методи розрахунку залізобетонних статично невизначних стержневих систем. УкрДУЗТ : зб. наук. пр. Вип. 170. С. 98-104.
  7. Al-Kaimakchi A., Rambo-Roddenberry M. Structural behavior of concrete girders prestressed and reinforced with stainless steel materials. Structures. 2021. Vol. 35(11). https://doi.org/10.1016/j.istruc.2021.08.134
  8. Pavlikov A.M., Harkava О.V., Hasenko А.V., Andriiets К.І. Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Вісник Одеської державної академії будівництва та архітектури. 2019. Вип. 77. С. 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92
  9. Pavlikov A.M., Mykytenko S.M., Hasenko A.V. Effective structural system for the construction of affordable housing. International Journal of Engineering & Technology: Publisher of International Academic Journals. 2018. Vol. 7, № 3.2. Pp.291-298. https://doi.org/10.14419/ijet.v7i3.2.14422
  10. Semko O.V., Hasenko A.V., Drobotia O.V., Marchenko D.P. Experimental studies of prestressed steel concrete wall girders. Academic journal. Series: Industrial Machine Building, Civil Engineering. 2022. Vol. 2 (59). Pp. 24-32. https://doi.org/10.26906/znp.2022.59.2876
  11. Wang C., Shen Y., Yang R., Wen Z. Ductility and Ultimate Capacity of Prestressed Steel Reinforced Concrete Beams. Hindawi Mathematical Problems in Engineering. Vol. 2017. Pp. 6, 1467940. https://doi.org/10.1155/2017/1467940
Copyright (c) 2023 Olexander Drobotia