DOI: https://doi.org/10.32515/2664-262X.2023.7(38).1.176-186

Cost Modeling and Measurement of Electrical energy of Electric Motors

Dmytro Kvashuk, Vitali Larin, Serhii Filonenko, Anzhelika Stakhova

About the Authors

Dmytro Kvashuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Doctoral student, National Aviation University, Kyiv, Ukraine, e-mail: dmytro.kvashuk@npp.nau.edu.ua, ORCID ID: 0000-0002-4591-8881

Vitali Larin, Professor, Doctor in Technics (Doctor of Technic Sciences), National Aviation University, Kyiv, Ukraine, e-mail: vitalii.larin@npp.nau.edu.ua, ORCID ID: 0000-0002-5042-2426

Serhii Filonenko, Professor, Doctor in Technics (Doctor of Technic Sciences), National Aviation University, Kyiv, Ukraine, e-mail: serhii.filonenko@npp.nau.edu.ua

Anzhelika Stakhova, Associate Professor, PhD in Technics (Candidate of Technics Sciences), National Aviation University, Kyiv, Ukraine, e-mail: anzhelika.stakhova@npp.nau.edu.ua, ORCID ID: 0000-0001-5171-6330

Abstract

The activity of determining the energy efficiency of electric motors includes several stages of work. These include modeling the operation of engines with the help of specialized software products, which allows you to determine the necessary parameters of electrical energy consumption, load, and rotational parameters in various operating modes. However, the most effective way is to obtain the real operating characteristics of the electric motor on test stands. This is due to many factors, from mechanical malfunctions to inconsistencies in the technical characteristics declared by the manufacturer. At the same time, both for the first and other methods, the problem lies in the optimization of the measuring equipment, which requires reducing the error, increasing the speed and sensitivity of the measuring transducers. The parameters that require special attention include the consumption of electrical energy, which in certain areas of industry is decisive during the design of technological sites, determination of industrial policy, production volumes, etc. This article proposes a way to establish the relationship between these parameters, the practical value of which, in different operating modes of the electric motor, will make it possible to evaluate both the economic efficiency of the electric machine and the possible risks associated with safe further operation, the period of operation and the ability to create the necessary acceleration moments at given loads. As a result of the study of the metrological characteristics of measuring meters, the dependence of their accuracy on instantaneous, impulse loads during the measurement of electrical energy consumption of asynchronous electric motors was established, which made it possible to develop an error correction algorithm based on a new information parameter. This parameter is characterized by the number of instantaneous loads caused by mechanical or inductive factors influencing the operation of electric motors in a certain, fixed period of time. Thus, the direct measurement of the torques of electric motors under the diagnosis of electric energy consumption allows to increase the accuracy of the counters by detecting additional impulse, destabilizing factors of influence.

Keywords

electric energy measurement, torque, electric energy meter, measurement, mathematical model, converter, feedback

Full Text:

PDF

References

1. Pasinkov, Y.A. & Savinykh, M.A. (2018). Tekhnologicheskii kontrol' metrologicheskikh kharakteristik schetchikov elektroenergii na proizvodstve [Technological control of metrological characteristics of electricity meters in manufacturing]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, no.1 (70), pp. 177–188. doi: 10.17212/1814-1196-2018-1-177-188 [in English].

2. Kudrya, S.O. (2011). Unconventional and renewable energy sources: a textbook . Kyiv: National Technical University of Ukraine («KPI») [in English].

3. Kontseptsiya pobudovy avtomatyzovanykh system komertsiynoho obliku elektroenerhiyi v umovakh enerhorynku : zatverdzhena spilʹnym nakazom Minpalyvenerho [The concept of building automated systems of commercial electricity accounting in the conditions of the energy market: approved by a joint order of the Ministry of Fuel and Energy]. (nd.). NKRE, Derzhkomenerhozberezhennya, Derzhstandartu, Derzhbudu, Derzhprompolityky № 32/28/28/276/75/54 vid 17 kvitnya 2000 r. Retrieved from http://search.ligazakon.ua/l_doc2.nsf/link1/FIN4936.html (data zvernennya: 15 kvitnya 2023 r.).

4. Tarafdar, Hagh M., Mahaei, S. M. & Zare, K. (2011). Improving bad data detection in state estimation of power system. International Journal of Electrical and Computer Engineering (IJECE). Vol. 1, № 2. P. 85–92 [in English].

5. International Performance Measurement And Verification Protocol. U.S. Dep. of Energy. (2002). nrel.gov. Retrieved from https:// www.nrel.gov/docs/fy02osti/31505.pdf [in English].

6. Denysiuk, S.P. (2014). Tekhnolohichni oriyentyry realizatsiyi kontseptsiyi Smart Grid v elektroenerhetychnykh systemakh [Guidelines of technological concepts of Smart Grid in power system]. Enerhetyka: ekonomika, tekhnolohii, ekolohiia : naukovyj zhurnal – Power Engineering: economics, technique, ecology, (1), 7-20 [in Ukrainian].

7. Popov, A.P., Chugulov, A.O., Gorshenkov, A.A. & Klevanskiy, SM . (2003). Vliyaniye shirotio-impul'snoy modulyatsii na pogreshnost' induktsionnykh schetchikov elektroenergii i na poteri v asinkhronnom dvigatele [Influence of pulse-width modulation on the error of induction electricity meters and on losses in an asynchronous motor] . Omsk, Sib. gos. avtomob. dor. akademiya. [in Russian].

8. Vizgina, Ye. I. (2011). Matematicheskaya model' vysokovol'tnogo asinkhronnogo dvigatelya bol'shoy moshchnosti [Mathematical model of a high-voltage asynchronous motor of high power]. Vestnik Chuvashskogo universiteta – Bulletin of the Chuvash University, (3), 44-52 [in Ukrainian].

9. Devendra, M. Jaiswal & Mohan, P. (2022). Thakre, Modeling & designing of smart energy meter for smart grid applications, Global Transitions Proceedings, Vol. 3, Issue 1, Pages 311-316. https://doi.org/10.1016/j.gltp.2022.03.017 [in English].

Citations

  1. Pasinkov Y.A., Savinykh M.A. Tekhnologicheskii kontrol' metrologicheskikh kharakteristik schetchikov elektroenergii na proizvodstve [Technological control of metrological characteristics of electricity meters in manufacturing]. Science bulletin of the Novosibirsk state technical university. 2018. no.1 (70). pp. 177–188. doi: 10.17212/1814-1196-2018-1-177-188.
  2. Kudrya S.O. Unconventional and renewable energy sources: a textbook . Kyiv: National Technical University of Ukraine («KPI»), 2011. 494 p.
  3. Концепція побудови автоматизованих систем комерційного обліку електроенергії в умовах енергоринку : затверджена спільним наказом Мінпаливенерго, НКРЕ, Держкоменергозбереження, Держстандарту, Держбуду, Держпромполітики № 32/28/28/276/75/54 від 17 квітня 2000 р. URL: http://search.ligazakon.ua/l_doc2.nsf/link1/FIN4936.html (дата звернення: 14.03.2023)
  4. Tarafdar Hagh M., Mahaei S. M., Zare K. Improving bad data detection in state estimation of power system. International Journal of Electrical and Computer Engineering (IJECE). 2011. Vol. 1, № 2. P. 85–92.
  5. International Performance Measurement And Verification Protocol. U.S. Dep. of Energy. 2002. URL: https://www.nrel.gov/docs/fy02osti/31505.pdf.
  6. Денисюк С. П. Технологічні орієнтири реалізації концепції Smart Grid в електроенергетичних системах . Енергетика: економіка, технології, екологія : наук. журнал. 2014. № 1(35). С. 7–20.
  7. Попов А.П., Чугулёв А.О., Горшенков А.А., Клеванский С.М . Влияние широтио-импульсной модуляции на погрешность индукционных счетчиков электроэнергии и на потери в асинхронном двигателе . Сиб. гос. автомоб. дор. академия. Омск, 2003. 6с.
  8. Визгина, Е. И. (2011). Математическая модель высоковольтного асинхронного двигателя большой мощности. Вестник Чувашского университета, (3), 44-52.
  9. Devendra M. Jaiswal, Mohan P. Thakre, Modeling & designing of smart energy meter for smart grid applications. Global Transitions Proceedings, Vol. 3, Issue 1, 2022, P. 311-316. https://doi.org/10.1016/j.gltp.2022.03.017.
Copyright (c) 2023 Dmytro Kvashuk, Vitali Larin, Serhii Filonenko, Anzhelika Stakhova