DOI: https://doi.org/10.32515/2664-262X.2023.7(38).1.56-76

Deformability and Crack Resistance of Damaged beams with Basalt-plastic Reinforcement Reinforced WITH carbon-Plastic Sheet

Irina Karpiuk, Vasily Karpiuk, Anatoly Kostyuk, Roman Hlibotskyi, Oleksandr Posternak

About the Authors

Irina Karpiuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine, e-mail: irina.carpyuk@gmail.com, ORCID ID: 0000-0003-3437-5882

Vasily Karpiuk, Professor, Doctor in Technics (Doctor of Technic Sciences), Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine, e-mail: v.karpiuk@ukr.net, ORCID ID: 0000-0002-4088-6489

Anatoly Kostyuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine, e-mail: isi@ogasa.org.ua, ORCID ID: 0000-0002-5642-2443

Roman Hlibotskyi, post-graduate, Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine, e-mail: romich.gl@gmail.com

leksandr Posternak, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine, e-mail: alex.bk@ukr.net, ORCID ID: 0000-0002-7016-6941

Abstract

The aim of this article is to introduce the results of experimental and theoretical studies on the deformability and crack resistance of damaged concrete beams reinforced with basalt-plastic reinforcement and strengthened with carbon-fiber jackets in the support regions. The paper presents the results of studies of the deformability and crack resistance of basalt-concrete beams, brought to the boundary state (ULS) in previous tests, reinforced with external fiber-reinforced plastic (CFRP). These data are presented in the form of experimental statistical relationships of the main parameters of the performance of the prototypes from design factors and levels of low-cycle repeated load. The greatest influence on the deformability of materials and test samples - damaged basalt concrete beams, reinforced with carbon fiber, have: the value of the relative span of the cut (а/h0), then - the class of concrete (C) and, finally, the coefficient of transverse reinforcement ( ) of their supporting areas. The conducted experimental and theoretical studies confirmed the expediency and possibility of using fiber-reinforced plastics (CFRP) for strengthening external structures damaged by force cracks and brought to limit states according to the first (ULS) and second (SLS) groups of reinforced structures according to the established technology.

Keywords

damaged basalt concrete beams, reinforcement of supporting areas with carbon fiber shirts, reinforcement of the lower stretched zones with carbon plastic sheets, deformability of concrete, reinforcement and fiber-reinforced plastic, crack resistance of beams, experimental and statistical dependencies

Full Text:

PDF

References

1. Karpiuk, I., Danilenko, D., Karpiuk, V., Danilenko, A. & Lyashenko, T. (2021). Bearing capacity of damaged reinforced concretebeams strengthened with metal casing. Acta Polytechnica, 61(6). P. 703–721, https://ojs.cvut.cz/ojs/index.php/ap/article/view/7020 [in English].

2. Abed, R.J. , Mashrei, M.A. & Sultan, A.A. (2022). Flexural behavior of reinforced concrete beams strengthened by carbon fiber reinforced polymer using different strengthening techniques. Advances in Structural Engineering. Vol. 25(2), 355 - 373, https://doi.org/10.1177/13694332211049992 [in English].

3. Hamed Jafarzadeh, Mahdi Nematzadeh, (2022). Flexural strengthening of fire—damaged GFRP—reinforced concrete beams using CFRP sheet: Experimental and analytical study. Composite Structures, Vol. 288, 115378. https://doi.org/10.1016/j.compstruct.2022.115378 [in English].

4. Mohammad A. Alhassan, Rajai Z. Al-Rousan, Ibrahim S. Alomari & Layla Amaireh. (2022). Shear response of RC beams encompassing hybrid CFRP strips and steel stirrups: Beam depth effect. Structures, Vol. 38, 781-796, https://doi.org/10.1016/j.istruc.2022.02.043 [in English].

5. Ahmed S.D. AL-Ridha, Kamal Sh. Mahmoud & Ali F. Atshan, (2022). Effect of carbon fiber reinforced polymer (CFRP) laminates on behaviour of flexural strength of steel beams with and without end anchorage plates, Materials Today. Proceedings, Vol. 49, Part 7, 2778-2785, https://doi.org/10.1016/j.matpr.2021.09.313 [in English].

6. Zhang Jiawei, Li Hang, Liu Shengwei, Zhang Xiangyan, Yang Chenghong & Zhang Rongling (2022). Bond behavior of the CFRP-concrete interface under combined sustained load and sulfate erosion. Structures, Vol. 35, 551-564, https://doi.org/10.1016/j.istruc.2021.11.029 [in English].

7. Jamal A. Abdalla, Rami A. Hawileh & Hayder A. Rasheed (2022). Behavior of Reinforced Concrete Beams Strengthened in Flexure using Externally Bonded Aluminum Alloy Plates. Procedia Structural Integrity, Vol. 37, 652-659, https://doi.org/10.1016/j.prostr.2022.01.134 [in English].

8. Zhen—wen Zhang, Zi-hua Zhang, Xuan Wang, Chun-heng Zhou. (2022). Dynamic and static interfacial bonding properties of CFRP–concrete subjected to freeze–thaw cycles. Structures, Vol. 37, 947—959, https://doi.org/10.1016/j.istruc.2022.01.049 [in English].

9. Azer Maazoun, Stijn Matthys, Oussama Atoui, Bachir Belkassem & David Lecompte. (2022). Finite element modelling of RC slabs retrofitted with CFRP strips under blast loading. Engineering Structures, Vol. 252, 113597, https://doi.org/10.1016/j.engstruct.2021.113597 [in English].

10. Alan Saeed Abdulrahman & Mohamed Raouf Abdul Kadir. (2021). Behavior and flexural strength of fire-damaged high-strength reinforced rectangular concrete beams with tension or compression zones exposed to fire repaired with CFRP sheets. Case Studies in Construction Materials, Vol. 15, e00779, https://doi.org/10.1016/j.cscm.2021.e00779 [in English].

11. Blikharskyy, Y., Khmil, R. & Blikharskyy, Z. (2018). Research of RC columns strengthened by carbon FRP under loading. MATEC Web of Conferences, Vol. 174, https://doi.org/10.1051/matecconf/201817404017 [in English].

12. Karpiuk, V., Tselikova, A., Khudobych, A., Karpiuk, I.. & Kostyuk, A. (2020). Study of strength, deformability property and crack resistance of beams with BFRP. Eastern-European journal of enterprise technologies. Vоl. 4/7 (106), 42-53, http://journals.uran.ua/eejet/article/view/209378/211998 [in English].

13. Karpiuk, K.V., Syomina, Yu. & Antonova, D. (2019). Calculation Models of the Bearing Capacity of Span Reinforced Concrete Structures Support Zones. Materials Science Forum: Actual Problems of Engineering Mechanics. Vol. 968, 209 - 226, https://www.scientific.net/MSF.968.209 [in English].

14. Organization Standard. Reinforcement of reinforced concrete structures with Sika® composite materials. STO13613997-001-2011. Moscow: TsNIIPromzdaniy OJSC, Zika [in English].

Citations

  1. I. Karpiuk, D. Danilenko, V. Karpiuk, A. Danilenko, T. Lyashenko Bearing capacity of damaged reinforced concretebeams strengthened with metal casing. Acta Polytechnica. 61(6):703–721, 2021. https://ojs.cvut.cz/ojs/index.php/ap/article/view/7020
  2. R.J. Abed, M.A. Mashrei, A.A. Sultan Flexural behavior of reinforced concrete beams strengthened by carbon fiber reinforced polymer using different strengthening techniques. Advances in Structural Engineering. Vol. 25(2), 355-373, 2022. https://doi.org/10.1177/13694332211049992
  3. Hamed Jafarzadeh, Mahdi Nematzadeh, Flexural strengthening of fire-damaged GFRP-reinforced concrete beams using CFRP sheet: Experimental and analytical study. Composite Structures, Vol. 288, 115378, 2022. https://doi.org/10.1016/j.compstruct.2022.115378
  4. Mohammad A. Alhassan, Rajai Z. Al-Rousan, Ibrahim S. Alomari, Layla Amaireh, Shear response of RC beams encompassing hybrid CFRP strips and steel stirrups: Beam depth effect. Structures, Vol. 38, 781—796, 2022. https://doi.org/10.1016/j.istruc.2022.02.043
  5. Ahmed S.D. AL—Ridha, Kamal Sh. Mahmoud, Ali F. Atshan, Effect of carbon fiber reinforced polymer (CFRP) laminates on behaviour of flexural strength of steel beams with and without end anchorage plates. Materials Today: Proceedings, Vol. 49, Part 7, 2778-2785, 2022. https://doi.org/10.1016/j.matpr.2021.09.313
  6. Zhang Jiawei, Li Hang, Liu Shengwei, Zhang Xiangyan, Yang Chenghong, Zhang Rongling, Bond behavior of the CFRP-concrete interface under combined sustained load and sulfate erosion. Structures. Vol. 35, 551-564, 2022. https://doi.org/10.1016/j.istruc.2021.11.029
  7. Jamal A. Abdalla, Rami A. Hawileh, Hayder A. Rasheed, Behavior of Reinforced Concrete Beams Strengthened in Flexure using Externally Bonded Aluminum Alloy Plates, Procedia Structural Integrity, Vol. 37, 652—659, 2022. https://doi.org/10.1016/j.prostr.2022.01.134
  8. Zhen—wen Zhang, Zi—hua Zhang, Xuan Wang, Chun—heng Zhou, Dynamic and static interfacial bonding properties of CFRP–concrete subjected to freeze–thaw cycles. Structures. Vol. 37, 947-959, 2022. https://doi.org/10.1016/j.istruc.2022.01.049
  9. Azer Maazoun, Stijn Matthys, Oussama Atoui, Bachir Belkassem, David Lecompte, Finite element modelling of RC slabs retrofitted with CFRP strips under blast loading, Engineering Structures, Vol. 252, 113597, 2022. https://doi.org/10.1016/j.engstruct.2021.113597
  10. Alan Saeed Abdulrahman, Mohamed Raouf Abdul Kadir, Behavior and flexural strength of fire-damaged high-strength reinforced rectangular concrete beams with tension or compression zones exposed to fire repaired with CFRP sheets, Case Studies in Construction Materials, Volume 15, 2021, e00779, https://doi.org/10.1016/j.cscm.2021.e00779
  11. Y. Blikharskyy, R. Khmil, and Z. Blikharskyy, Research of RC columns strengthened by carbon FRP under loading, in MATEC Web of Conferences, 2018, vol. 174, https://doi.org/10.1051/matecconf/201817404017
  12. Karpiuk V., Tselikova A., Khudobych A., Karpiuk I., Kostyuk A. Study of strength, deformability property and crack resistance of beams with BFRP. Eastern - European journal of enterprise technologies. Харків, Vоl. 4/7 (106), 42-53, 2020. http://journals.uran.ua/eejet/article/view/209378/211998
  13. K. V. Karpiuk, Yu. Syomina., D. Antonova Calculation Models of the Bearing Capacity of Span Reinforced Concrete Structures Support Zones. Materials Science Forum: Actual Problems of Engineering Mechanics. Vol. 968, 209-226, 2019. https://www.scientific.net/MSF.968.209
  14. Organization Standard. Reinforcement of reinforced concrete structures with Sika® composite materials. STO13613997-001-2011. Moscow: TsNIIPromzdaniy OJSC, Zika.
Copyright (c) 2023 Irina Karpiuk, Vasily Karpiuk, Anatoly Kostyuk, Roman Hlibotskyi, Oleksandr Posternak