DOI: https://doi.org/10.32515/2664-262X.2023.7(38).1.22-29

Improvement of Technology for Dismantling Metal Structures of Mechanized Mine Supports

Victor Bokov, Oleh Sisa, Volodymyr Mirzak, Ruslan Teliuta, Viktor Pukalov

About the Authors

Victor Bokov, Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, е-mail: Viktor.alia.kntu@gmail.com, ORCID ID: 0000-0002-9340-1617

Oleh Sisa, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: sisaoleh@ukr.net, ORCID ID: 0000-0002-4783-100X

Volodymyr Mirzak, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: mirzak.moodle@gmail.com, ORCID ID: 0000-0002-4167-7291

Ruslan Teliuta, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: teliutarv@gmail.com, ORCID ID: 0000-0002-4923-1227

Viktor Pukalov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: Pukalovvictor@gmail.com, ORCID ID: 0000-0002-0848-5861

Abstract

During operation, the hinge connections of mine supports practically stop rotating. This is due to the fact that, as a result of the aggressive mine water and strong dustiness, the diametrical clearance of 1-2 mm between the axis and the bushing is tightly filled with oxides and coal dust, especially in the connections of the base. This circumstance leads to the fact that the axes (pins) in the hinges lose their mobility and require significant effort for their dismantling. To repair the mechanized mine support, it is necessary to dismantle the hinge connections, which are formed by axes and holes in levers (traverses), base ears, and overlaps. Currently, the dismantling of hinge connections of mine supports is carried out using manual impact tools. This operation is extremely labor-intensive, physically heavy, and belongs to hazardous work. The goal of the study is to improve the working conditions of the operator during the dismantling process of axes in hinge connections of mine supports by using a mechanized specialized hydraulic press. To achieve the set goal, the following tasks must be solved: to determine the maximum permissible disassembly force of the axes, taking into account the strength of the load-bearing structure elements; to develop a concept of a mechanized hydraulic press, including the composition of the installation, the general technical description, the principle of operation, the kinematic scheme, and the tool. Studies have been carried out on the deformation modeling of mine support elements under load using the SOLIDWORKS Simulation calculation module to determine the maximum permissible disassembly force of the axes. It has been shown that the disassembly load of the shaft support axis with a force of more than 1000 kN leads to the loss of the structural strength reserve, which is unacceptable. An effective technology for dismantling the axes of a mechanized mine support has been proposed. A concept of an original specialized hydraulic press "Kit-100" for dismantling axes has been developed, which allows replacing the physically heavy and dangerous work of the operator with a lighter, mechanized process.

Keywords

mechanized mine support, modeling, axis dismantling, hydraulic press, kinematic scheme, tool

Full Text:

PDF

References

1. Szurgacz D. (2021). Dynamic Analysis for the Hydraulic Leg Powerof a Powered Roof Support. Energies. 14(18), 5715. https://doi.org/10.3390/en14185715 [in English].

2. Szurgacz, D., Borska, B., Diederichs, R., Zhironkin S. (2022). Development of a Hydraulic System for the Automatic Expansion of Powered Roof Support. Energies, 15(3), 680. https://doi.org/10.3390/en15030680 [in English].

3. Wang, G.F., Pang, Y.H. (2015). Relationship between hydraulic support and surrounding rock coupling and its application. Journal of the China Coal Society, Vol. 40, №1. P. 30–34 [in English].

4. Liang, L., Tian, J., Zheng, H., Jiao, S. (2015). A Study on Force Transmission in a Hydraulic Support under Impact Loading on Its Canopy Beam. J. China Coal Soc. Vol. 40. P. 2522–2527 [in English].

5. Zeng, Q., Xu, P., Meng, Z., Ma, C., Lei, X. (2023). Posture and Dynamics Analysis of Hydraulic Support with Joint Clearance under Impact Load. Machines. Vol. 11, №1. P. 159. https://doi.org/10.3390/machines11020159 in English].

6. Mihajlov, A.G., Mihajlov, A.A. & Mihajlova, E.A. (2004). Ionno-plazmennye vakuumnye pokrytiya – osnova shirokogo povysheniya kachestva izdelij mashinostroeniya [Ion-plasma vacuum coatings are the basis for a wide improvement in the quality of engineering products]. Doneck: DonNТU [in Ukrainian].

7. Kennedy, D., Xue, Y., Mihaylova, M. (2005). Current and Future Applications of Surface Engineering. The Engineers Journal (Technical). Vol. 59. P. 287-292 [in English].

8. Tatyanchenko, A. G., Kayun, A. P., Lappo, I. N. (2010). Tehnologicheskie perspektivy povysheniya effektivnosti ekspluatacii shahtnoj krepi [Technological prospects for increasing the efficiency of mine support operation]. Visti Doneckogo girnichogo institutu [in Ukrainian].

9. Kamishackij, O.F. & Rascvyetayev, V.O. (2019). Modelyuvannya tehnologichnih procesiv [Modeling of technological processes]. Dnipro: Dniprovska politehnika [in Ukrainian].

10. Okun, A.O., Gubskij, S.O., Chuhlib, V.L., Ashkelyanec, A.V. & Yurchenko, O.A. (2021). Osnovi modelyuvannya procesiv v obrobci tiskom [Basics of modeling processes in pressure treatment]. Harkiv: Harkivskij politehnichnij institut [in Ukrainian].

Citations

  1. Szurgacz D. Dynamic Analysis for the Hydraulic Leg Powerof a Powered Roof Support. Energies. 2021. 14 (18). 5715. https://doi.org/10.3390/en14185715
  2. Szurgacz D., Borska B., Diederichs R., Zhironkin S. Development of a Hydraulic System for the Automatic Expansion of Powered Roof Support. Energies. 2022. 15(3), 680. https://doi.org/10.3390/en15030680
  3. Wang G. F., Pang Y. H. Relationship between hydraulic support and surrounding rock coupling and its application. Journal of the China Coal Society. 2015. Vol. 40, №1. P. 30–34.
  4. Liang L., Tian J., Zheng H., Jiao S. A Study on Force Transmission in a Hydraulic Support under Impact Loading on Its Canopy Beam. J. China Coal Soc. 2015. Vol. 40. P. 2522–2527.
  5. Zeng Q., Xu P., Meng Z., Ma C., Lei X. Posture and Dynamics Analysis of Hydraulic Support with Joint Clearance under Impact Load. Machines. 2023. Vol. 11, №1. P. 159. https://doi.org/10.3390/machines11020159
  6. Михайлов А. Г., Михайлов А. А., Михайлова Е. А. Ионно-плазменные вакуумные покрытия – основа широкого повышения качества изделий машиностроения . Прогрессивные технологии и системы машиностроения: межд. сб. научн. трудов. 2004. Вып. 28. С. 108-115.
  7. Kennedy D., Xue Y., Mihaylova M. Current and Future Applications of Surface Engineering. The Engineers Journal (Technical). 2005. Vol. 59. P. 287-292.
  8. Татьянченко А. Г., Каюн А. П., Лаппо И. Н. Технологические перспективы повышения эффективности эксплуатации шахтной крепи. Вісті Донецького гірничого інституту. 2010. №1. С. 20 – 29.
  9. Камишацький О.Ф., Расцвєтаєв В.О. Моделювання технологічних процесів. Методичні рекомендації до виконання практичних робіт для студентів спеціальності 185 «Нафтогазова інженерія та технології» / М-во освіти і науки України, Нац. техн. ун-т «Дніпровська політехніка». Д.: НТУ «ДП». 2019. C. 48.
  10. Методичні вказівки до виконання лабораторних і практичних робіт з курсу «Основи моделювання процесів в обробці тиском» для студентів освітньої програми «Прикладна механіка» денної і заочної форми навчання / уклад. : А. О. Окунь, С. О. Губський, В. Л. Чухліб, А. В. Ашкелянець, О. А. Юрченко. Харків : НТУ «ХПІ». 2021. C. 88.
Copyright (c) 2023 Victor Bokov, Oleh Sisa, Volodymyr Mirzak, Ruslan Teliuta, Viktor Pukalov