DOI: https://doi.org/10.32515/2664-262X.2022.6(37).1.52-60

Methods of Increasing the Accuracy of Measuring with the Help of a Coordinate-Measuring Hand

Volodymyr Kvasnikov, Denis Kataiev

About the Authors

Volodymyr Kvasnikov, Professor, Doctor in Technics (Doctor of Technics Sciences), National Aviation University, Kyiv, Ukraine, e-mail: 627627@stud.nau.edu.ua, ORCID ID: 0000-0002-6525-9721

Denis Kataiev, post-graduate, National Aviation University, Kyiv, Ukraine, e-mail: kataeva.mariia@gmail.com, ORCID ID: 0000-0002-2383-3123

Abstract

In industrial practice, the specification of requirements for the accuracy of manufacturing a part with a complex spatial shape is still not accurate enough, which often leads to significant deviations from the given shape. Since the nominal shape of a part with a complex geometry is determined by characteristic points, the task of standardizing the tolerances to the positions of these points and improving the measurement accuracy control process becomes urgent. The article has developed algorithms for the control of measuring measuring measures of the measuring and measuring hand for remote measurements. Algorithms for assessing the accuracy of remote measurements of parts with complex geometric shape are proposed. The principle of operation of V-shaped probes is described. A critical analysis of the specification of requirements for accuracy for measuring parts with complex geometric shapes was carried out. The main sources of measurement errors are investigated by means of a coordinate-measuring hand. Based on the results of the study, the most important sources of measurement error were identified.

Keywords

coordinate measuring equipment, coordinate-measuring hand, geometric tolerances, contactless probe, remote measurements

Full Text:

PDF

References

1. Brazhkin B.S., Isaev, N.I., Kudinov, A.A. & Mirotvorskij, V.S. (2014). Tehnologicheskie osnovy kontrolja na koordinatno-izmeritel'nyh mashinah [Technological foundations of control on coordinate measuring machines] . A. A. Kudinova (Ed.). Moskow: Mittel' Press [in Russian].

2. Gao, H, Zhang, ML & Zhang, XJ. (2017). Review on key technology of manipulator absolute positioning accuracy calibration. Application Research of Computers, 34(9): 2570–2576 [in English].

3. Grechihin, S.V. (2017). Razrabotka processa priemochnogo kontrolja s ispol'zovaniem koordinatno-izmeritel'noj mashiny detali «Korpus reduktora»: vypusknaja kvalifikacionnaja rabota [Development of an acceptance control process using a coordinate measuring machine for the “Reducer Housing” part: final qualification work]. Ros. gos. prof.-ped. un-t, In-t inzh.-ped. obrazovanija, Kaf. tehnologii mashinostroenija, sertifikacii i metodiki prof. obuchenija. Ekaterinburg [in Russian].

4. Li L, Yang H, Jiang L, et al. (2020). Optimal measurement area determination algorithm of articulated arm measuring machine based on improved FOA. Measurement and Control; 53(9–10): 2146–2158 [in English].

5. Murachjov, D.A. & Cherepanov, M.A. (2016). Metodika izmerenija parametrov na koordinatno-izmeritel'noj mashine GLOBAL CLASSIC 05.05.05 [Technique for measuring parameters on coordinate measuring machine GLOBAL CLASSIC 05.05.05]. Molodoj uchenyj – Young scientist, 12.3, 53-58 [in Russian].

6. Lu Y, YuLMandGuoB.Calibration of industrial robot structure parameters based on closed dimensional chain. Chinese Journal of Scientific Instrument 2018; 39(02): 3846. [in Chinese].

7. Chapala, O.V. (2016). Koordinatno-izmeritel'nye mashiny i ih primenenie [. Coordinate measuring machines and their applications]. Novainfo. No 57. Retrieved from http://novainfo.ru/article/10054 [in Russian].

8. Li RJ, Fan KC & Huang QX. (2016). A long-stroke 3D contact scanning probe for micro/nano coordinate measuring machine. Precision Engineering; 43: 220–229 [in English].

9. Zubarev, Ju.M. & Kosarevskij, S.V. 2017. Avtomatizacija koordinatnyh izmerenij v mashinostroenii: uchebnoe posobie [Automation of coordinate measurements in mechanical engineering]. 3d ed, . Sankt-Peterburg :Lan' [in Russian].

10. Grechnikov, F.V., Zaharov, O.V. & Korolev, A.A. (2016). Napravlenija povyshenija proizvoditel'nosti i tochnosti kontrolja slozhnyh poverhnostej na koordinatno-izmeritel'nyh mashinah [Directions for improving the productivity and accuracy of control of complex surfaces on coordinate measuring machines]. Sistemy proektirovanija, tehnologicheskoj podgotovki proizvodstva i upravlenija jetapami zhiznennogo cikla promyshlennogo produkta – Systems of design, technological preparation of production and management of the stages of the life cycle of an industrial product. Moskva: IPU RAN, S. 223-225 [in Russian].

11. Graham, T. (2016). Smith Machine Tool Metrology. Smith An Industrial Handbook Springer International Publishing Switzerland [in English].

12. Jetingof, M.I. (2016). Avtomaticheskij razmernyj kontrol' na metallorezhushhih stankah [Automatic dimensional control on metal-cutting machines]. Moskow: APR [in Russian].

Citations

  1. Технологические основы контроля на координатно-измерительных машинах / Б. С. Бражкин, Н. И. Исаев, А. А. Кудинов, В. С. Миротворский; под общ. ред. А. А. Кудинова. М.: Миттель Пресс, 2014. 149 с.
  2. Gao H, Zhang ML and Zhang XJ. Review on key technology of manipulator absolute positioning accuracy calibration. Application Research of Computers . 2017; 34(9): 2570–2576.
  3. Гречихин С. В. Разработка процесса приемочного контроля с использованием координатно-измерительной машины детали «Корпус редуктора»: выпускная квалификационная работа . Рос. гос. проф.-пед. ун-т, Ин-т инж.-пед. образования, Каф. технологии машиностроения, сертификации и методики проф. обучения. Екатеринбург, 2017. 68 с.
  4. Li L, Yang H, Jiang L, et al. Optimal measurement area determination algorithm of articulated arm measuring machine based on improved FOA. Measurement and Control. 2020; 53(9–10): 2146–2158.
  5. Мурачёв Д. А., Черепанов М. А. Методика измерения параметров на координатно-измерительной машине GLOBAL CLASSIC 05.05.05 . Молодой ученый. 2016. No12.3. С. 53-58
  6. Lu Y, YuLMandGuoB.Calibration of industrial robot structure parameters based on closed dimensional chain. Chinese Journal of Scientific Instrument . 2018; 39(02): 3846. (in Chinese)
  7. Чапала О.В. Координатно-измерительные машины и их применение . Новаинфо. 2016. No 57. URL: http://novainfo.ru/article/10054 (дата обращения: 14.08.2022).
  8. Li RJ, Fan KC and Huang QX. A long-stroke 3D contact scanning probe for micro/nano coordinate measuring machine. Precision Engineering. 2016; 43: 220–229.
  9. Зубарев Ю.М., Косаревский С.В. Автоматизация координатных измерений в машиностроении: учебное пособие . Изд. 3-е, стер. Санкт-Петербург :Лань, 2017. 159
  10. Гречников Ф.В., Захаров О.В., Королев А.А. Направления повышения производительности и точности контроля сложных поверхностей на координатно-измерительных машинах . Системы проектирования, технологической подготовки производства и управления этапами жизненного цикла промышленного продукта. Москва: ИПУ РАН, 2016. С. 223-225.
  11. Graham T. Smith . Machine Tool Metrology . An Industrial Handbook Springer International Publishing . Switzerland. 2016.
  12. Этингоф М.И. Автоматический размерный контроль на металлорежущих станках . M.: АПР, 2016. 336 с.
Copyright (c) 2022 Volodymyr Kvasnikov, Denis Kataiev