DOI: https://doi.org/10.32515/2664-262X.2022.5(36).2.97-102
Development of Algorithms and Software for Vibration Measurement and Analysis Systems
Anzhelika Stakhova, Associate Professor, PhD in Technics (Candidate of Technics Sciences), National Aviation University, Kyiv, Ukraine, e-mail: sap@nau.edu.ua, ORCID ID: 0000-0001-5171-6330
Serhii Makarovskyi, Student, National Aviation University, Kyiv, Ukraine, e-mail: 888makar888@gmail.com
Abstract
An analysis is presented in the field of vibration control, methods and algorithms for processing vibration data. The main existing problems of systems for diagnosing the state of equipment of complex structures are identified, directions for their solution are shown. The development of an algorithm and software for solving problems of vibration control with the determination of amplitude-phase parameters in real time and processing of vibration data to assess the technical condition of mechanisms is proposed.
The results obtained form the theoretical and practical basis for the development of software for computer systems for solving problems of vibration control in real time, providing continuous recording and determination of amplitude-phase parameters. Features of the input of vibration data in vibration control systems make it possible to accurately determine the moment of their readiness, which, along with the organization of data transmission via a direct memory access channel and a special implementation of the input procedure, allows data to be received in real time. They can be used to modernize and further develop existing systems.
The developed methods and algorithms for the analysis of vibration signals can be used in automated vibration control and decision support systems to determine the quality of manufacturing and assembly of various components, assess the residual resistance and rigidity, monitor and evaluate the state of mechanisms and assemblies with rotational motion. The proposed method for the formation of diagnostic features and the determination of informatively significant parameters for assessing the technical condition of complex mechanisms is based on the use of spectral analysis. Operational and multifunctional analysis of large volumes of experimental data will expand the functionality of vibration control systems.
Keywords
vibration control, vibration control system, spectral analysis, assessment of technical condition
Full Text:
PDF
References
1. Stahova, A.P. & Kvasnіkov, V.P. (2021). Avtomatizacіja vijavlennja defektіv mashinnogo obladnannja zasobami vіbrodіagnostiki [Automation of detection of machine equipment defects by vibrodiagnostics]. Vіsnik Cherkas'kogo derzhavnogo tehnologіchnogo unіversitetu. Tehnіchnі nauki – Bulletin of Cherkasy State Technological University, 1, 32-41 [in Russian].
2. Prudhom, A., Antonino-Daviu, J., Razik, H., & Climente-Alarcon, V. (2017). Time-frequency vibration analysis for the detection of motor damages caused by bearing currents. Mechanical Systems and Signal Processing, 84, 747-762.
3. Kvasnikov, V., & Stakhova, A. (2022). Vibration Measurement Technologies and Systems. In Safety in Aviation and Space Technologies (pp. 53-62). Springer, Cham.
4. Stakhova, A., & Kvasnikov, V. (2021). Development of a device for measuring and analyzing vibrations. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 11(2), 48-51.
5. Tian, B., Liu, H., Yang, N., Zhao, Y., & Jiang, Z. (2016). Design of a piezoelectric accelerometer with high sensitivity and low transverse effect. Sensors, 16(10), 1587.
6. Buklagin, D.S. (2018). Novye izmeritel'nye sistemy: napravlenija i vozmozhnosti primenenija pri ispytanijah sel'skohozjajstvennoj tehniki [New measuring systems: directions and possibilities of application in testing agricultural machinery]. Tehnika i oborudovanie dlja sela – Machinery and equipment for the village, 5, 30-35 [in Russian].
7. Chaturvedi, V., Nabavi, M. R., Vogel, J. G., & Nihtianov, S. (2017). Demodulation techniques for self-oscillating eddy-current displacement sensor interfaces: A review. IEEE Sensors Journal, 17(9), 2617-2624.
8. Eidukeviciute, M., & Volkovas, V. (2007). Measurement uncertainty in vibromonitoring systems and diagnostics reliability evaluation. Journal of Sound and Vibration, 308(3-5), 625-631.
9. Ahmed, H., & Nandi, A. K. (2020). Condition monitoring with vibration signals: Compressive sampling and learning algorithms for rotating machines. John Wiley & Sons.
10. Lacey, S. (2011). The role of vibration monitoring in predictive maintenance. Asset Management & Maintenance Journal, 24(1), 42-51.
11. Brown, D. N., & Jorgensen, J. C. (1987). Machine condition monitoring using vibration analysis. Bruel & Kjaer, Application Note.
GOST Style Citations
Стахова А. П., Квасніков В. П. Автоматизація виявлення дефектів машинного обладнання засобами вібродіагностики . Вісник Черкаського державного технологічного університету. Технічні науки. 2021. №. 1. С. 32-41.
Prudhom A. et al. Time-frequency vibration analysis for the detection of motor damages caused by bearing currents . Mechanical Systems and Signal Processing. 2017. Т. 84. С. 747-762.
Kvasnikov V., Stakhova A. Vibration Measurement Technologies and Systems . Safety in Aviation and Space Technologies. Springer, Cham, 2022. С. 53-62.
Stakhova A., Kvasnikov V. Development of a device for measuring and analyzing vibrations . Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska. 2021. Т. 11. №. 2. С. 48-51.
Tian B. et al. Design of a piezoelectric accelerometer with high sensitivity and low transverse effect . Sensors. 2016. Т. 16, №. 10. С. 1587.
Буклагин Д. С. Новые измерительные системы: направления и возможности применения при испытаниях сельскохозяйственной техники . Техника и оборудование для села. 2018. №. 5. С. 30-35.
Chaturvedi V. et al. Demodulation techniques for self-oscillating eddy-current displacement sensor interfaces: A review . IEEE Sensors Journal. 2017. Т. 17, №. 9. С. 2617-2624.
Eidukeviciute, M., Volkovasa, V. Measurement uncertainty in vibromonitoring systems and diagnostics reliability evaluation . J. of Sound and Vibration. 2007. Vol. 308, № 3–5. Р. 625–631.
Ahmed H., Nandi A. K. Condition monitoring with vibration signals: Compressive sampling and learning algorithms for rotating machines. John Wiley & Sons, 2020.
Lacey S. The role of vibration monitoring in predictive maintenance . Asset Management & Maintenance Journal. 2011. Т. 24. №. 1. С. 42-51.
Brown D. N., Jorgensen J. C. Machine condition monitoring using vibration analysis . Bruel & Kjaer, Application Note. 1987.
Copyright (c) 2022 Anzhelika Stakhova, Serhii Makarovskyi
Development of Algorithms and Software for Vibration Measurement and Analysis Systems
Anzhelika Stakhova, Associate Professor, PhD in Technics (Candidate of Technics Sciences), National Aviation University, Kyiv, Ukraine, e-mail: sap@nau.edu.ua, ORCID ID: 0000-0001-5171-6330
Serhii Makarovskyi, Student, National Aviation University, Kyiv, Ukraine, e-mail: 888makar888@gmail.com
Abstract
Keywords
Full Text:
PDFReferences
1. Stahova, A.P. & Kvasnіkov, V.P. (2021). Avtomatizacіja vijavlennja defektіv mashinnogo obladnannja zasobami vіbrodіagnostiki [Automation of detection of machine equipment defects by vibrodiagnostics]. Vіsnik Cherkas'kogo derzhavnogo tehnologіchnogo unіversitetu. Tehnіchnі nauki – Bulletin of Cherkasy State Technological University, 1, 32-41 [in Russian].
2. Prudhom, A., Antonino-Daviu, J., Razik, H., & Climente-Alarcon, V. (2017). Time-frequency vibration analysis for the detection of motor damages caused by bearing currents. Mechanical Systems and Signal Processing, 84, 747-762.
3. Kvasnikov, V., & Stakhova, A. (2022). Vibration Measurement Technologies and Systems. In Safety in Aviation and Space Technologies (pp. 53-62). Springer, Cham.
4. Stakhova, A., & Kvasnikov, V. (2021). Development of a device for measuring and analyzing vibrations. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 11(2), 48-51.
5. Tian, B., Liu, H., Yang, N., Zhao, Y., & Jiang, Z. (2016). Design of a piezoelectric accelerometer with high sensitivity and low transverse effect. Sensors, 16(10), 1587.
6. Buklagin, D.S. (2018). Novye izmeritel'nye sistemy: napravlenija i vozmozhnosti primenenija pri ispytanijah sel'skohozjajstvennoj tehniki [New measuring systems: directions and possibilities of application in testing agricultural machinery]. Tehnika i oborudovanie dlja sela – Machinery and equipment for the village, 5, 30-35 [in Russian].
7. Chaturvedi, V., Nabavi, M. R., Vogel, J. G., & Nihtianov, S. (2017). Demodulation techniques for self-oscillating eddy-current displacement sensor interfaces: A review. IEEE Sensors Journal, 17(9), 2617-2624.
8. Eidukeviciute, M., & Volkovas, V. (2007). Measurement uncertainty in vibromonitoring systems and diagnostics reliability evaluation. Journal of Sound and Vibration, 308(3-5), 625-631.
9. Ahmed, H., & Nandi, A. K. (2020). Condition monitoring with vibration signals: Compressive sampling and learning algorithms for rotating machines. John Wiley & Sons.
10. Lacey, S. (2011). The role of vibration monitoring in predictive maintenance. Asset Management & Maintenance Journal, 24(1), 42-51.
11. Brown, D. N., & Jorgensen, J. C. (1987). Machine condition monitoring using vibration analysis. Bruel & Kjaer, Application Note.