DOI: https://doi.org/10.32515/2664-262X.2022.5(36).2.153-161

Profiled Steel Sheets of Steel-reinforced Concrete Floors Fixed Formwork Load-bearing Capacity Rational Use

Alexander Semko, Аnton Hasenkо, Fenko Oleksiy, Viktor Dariienko

Alexander Semko, Professor, Doctor in Technics (Doctor of Technics Sciences), doctoral student, Educational and Scientific Institute of Architecture, Construction and Land Management, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine, e-mail: al.vl.semko@gmail.com, ORCID ID: 0000-0002-2455-752X

Аnton Hasenkо, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Educational and Scientific Institute of Architecture, Construction and Land Management, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine, e-mail: gasentk@gmail.com, ORCID ID: 0000-0003-1045-8077

Fenko Oleksiy, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Educational and Scientific Institute of Architecture, Construction and Land Management, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine, e-mail: fenko.aleksey@gmail.com, ORCID ID: 0000-0002-3175-2892

Viktor Dariienko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: vvdarienko@gmail.com, ORCID ID: 0000-0001-9023-6030

Abstract

Building structures effective design should ensure uniform strength of all building load-bearing elements. Steel-reinforced concrete structures are made both during new construction and during the reconstruction of buildings or structures by a successful combination of steel, mainly rod elements, and monolithic concrete. Quite often, in order to increase the manufacturability of such floors installing and reduce the construction time, a monolithic reinforced concrete slab is arranged on a fixed formwork made of profiled flooring. To include a profiled sheet in compatible work with a monolithic slab, anchoring means are provided: protrusions on the sheets surface, rod reinforcement, etc. However, due to the usually equal pitch of the profiled sheets (steel beams) supports, they are unevenly stressed. On the basis of the conducted theoretical analysis, 6 slabs 6 m long, 1.06 m wide and 0.53 m made of K35-0.5 steel profiled flooring were designed, manufactured and tested according to a continuous three-span scheme, as a fixed formwork for monolithic steel-reinforced concrete floors. The samples were loaded with bricks. To measure deflections during sample loading, watch-type indicators with a division value of 0.01 mm were used. To measure strain electro tensile resistors were used. An analysis of supports installation variable step influence, as one of the methods of these floors load-bearing capacity use level balancing was carried out. It has been experimentally confirmed that when equalizing the values of the span or support bending moments (at the same time, the support moments are twice as large as the span), as well as deflections, the lengths of the extreme spans should be 25% less than the central spans.

Keywords

steel-reinforced concrete floor, fixed formwork, profiled flooring, force adjustment

Full Text:

PDF

References

1. Semko, O. V. & Hasenko, A. V. (2006). Nadiynistʹ stysnutykh stalevykh elementiv z shveleriv pry koroziynomu znosi [Reliability of compressed steel elements from channels at corrosion wear]. Metalevi konstruktsiyi – Steel structures. Issue 11, Vol. 3, 197-202 [in Ukrainian].

2. Storozhenko, L., Yermolenko, D. & Gasii ,G. (2018). Investigation of the Deformation State of a Composite Cable Space Frame Structures with a Photogrammetric Method. Intern. Journal of Engineering & Technology, 7(3.2), 442-446 [in English]. DOI: http://dx.doi.org/10.14419/ijet.v7i3.2.14568

3. Vatulya, G. L. & Orel, E. F. (2012). Vplyv parametriv pererizu na nesuchu zdatnistʹ stalebetonnykh konstruktsiy [Influence of section parameters on the bearing capacity of reinforced concrete structures]. Zb. nauk. pr. – Coll. Sc. w. NUPP: Industrial engineering, construction, Vol. 3(33), 30-34 [in Ukrainian].

4. Hasenko, A. V., Novitsky, O. P. & Pentz, V. F. (2021). Rekonstruktsiya bahatopoverkhovykh promyslovykh budivelʹ pid dostupne zhytlo iz vykorystannyam resursozberezhuvalʹnykh konstruktyvnykh rishenʹ [Reconstruction of multi-storey industrial buildings for affordable housing with the use of resource-saving design solutions]. Zb. nauk. pratsʹ. Visnyk NUVHP: Tekhnichni nauky – Coll. Sc. work. Bulletin NUVGP: Technical Sciences, V.2(94). 27-40 [in Ukrainian]. https://doi.org/10.31713/vt220214

5. Bobalo, T. V. (2012) Porivnyannya rezulʹtativ eksperymentalʹnoho doslidzhennya stalebetonnykh balok iz kombinovanym armuvannyam z rezulʹtatamy rozrakhunku za diyuchymy natsionalʹnymy normamy [Comparison of the results of experimental research of reinforced concrete beams with combined reinforcement with the results of calculation according to current national standards]. Arkhitektura i silʹsʹkohospodarsʹke budivnytstvo: Visnyk Natsionalʹnoho ahrarnoho universytetu – Architecture and Agricultural Construction: Bulletin of the National Agrarian University, Vol. 13, 34-43 [in Ukrainian].

6. Storozhenko, L. I. & Lapenko, O. I. (2008). Zalizobetonni konstruktsiyi v neznimniy opalubtsi [Reinforced concrete structures in non-removable formwork] [in Ukrainian].

7. Semko, V. O. & Prokhorenko, D. A. (2014). Eksperymentalʹni doslidzhennya mitsnosti ta deformatyvnosti khvylyastykh stalevykh profilʹovanykh nastyliv [Experimental studies of strength and deformability of corrugated steel profiled decking]. Zb. nauk. pratsʹ NUPP: Haluzeve mashynobuduvannya, budivnytstvo – Coll. Science. works NUPP: Industrial engineering, construction. Vol. 3(42),161-165 [in Ukrainian].

8. Vatulya, G. L., Orel, E. F., Matyashchuk, O. V. & Dovganik, O. Ya. (2012). Otsinka vplyvu tovshchyny metalevoho lysta na nesuchu zdatnistʹ konstruktsiy iz zovnishnim armuvannyam [Evaluation of the effect of metal sheet thickness on the bearing capacity of structures with external reinforcement]. Zb. nauk. pratsʹ UkrDUZT – Coll. Science. works UkrDUZT, Vol. 133, 290-295 [in Ukrainian].

9. Semko, O.V., Hasenko, A.V., Mahas, N.N. & Sirobaba, V.O. (2018). Bearing Capacity and Deformability of Three-Component Steel Reinforced Concrete Constructions Made of Lightweight Concrete. International Journal of Engineering & Technology. Vol 7, No 4.8. Special Issue 8. Science Publishing Corporation, RAK Free Trade Zone. 53-57 [in English]. DOI: https://doi.org/10.14419/ijet.v7i4.8.27213

10. Kochkarev, D.V. (2017). Inzhenerni metody rozrakhunku zalizobetonnykh statychno nevyznachnykh sterzhnevykh system [Engineering methods for calculating reinforced concrete statically indeterminate rod systems]. Zb. nauk. pratsʹ UkrDUZT – Coll. Sc. works UkrDUZT, Vol. 170, 98-104 [in Ukrainian].

11. Semko, O.V. & Hasenko, A.V. (2022). Optymizatsiya kroku opor nerozriznykh balok stalezalizobetonnoho samonapruzhenoho perekryttya [Optimization of the supports pitch of steel-reinforced concrete self-stressed floor continuous beams]. Tezy dopovidey – Thesis of reports ODABA. 153-154 [in Ukrainian].

GOST Style Citations

  • Семко О.В., Гасенко А.В. Надійність стиснутих сталевих елементів з швелерів при корозійному зносі. Металеві конструкції. 2006. Т. 11, № 3. С. 197–202.
  • Storozhenko L., Yermolenko D., Gasii G. Investigation of the Deformation State of a Composite Cable Space Frame Structures with a Photogrammetric Method. Intern. Journal of Engineering & Technology. 2018. 7(3.2). Р. 442–446. DOI: http://dx.doi.org/10.14419/ijet.v7i3.2.14568
  • Ватуля Г.Л., Орел Е.Ф. Вплив параметрів перерізу на несучу здатність сталебетонних конструк-цій. Зб. наук. пр.: Галузеве машинобудування, будівництво. Вип. 3(33). Полтава, 2012. С. 30-34.
  • Гасенко А.В., Новицький О.П., Пенц В.Ф. Реконструкція багатоповерхових промислових будівель під доступне житло із використанням ресурсозбережувальних конструктивних рішень. Зб. наук. пр. Вісник НУВГП, серія Технічні науки. 2021. Вип. № 2(94). С. 27–40. DOI: https://doi.org/10.31713/vt220214
  • Бобало Т.В. Порівняння результатів експериментального дослідження сталебетонних балок із комбінованим армуванням з результатами розрахунку за діючими національними нормами. Архітектура і сільськогосподарське будівництво: Вісник НАУ. 2012. №13. С.34-43.
  • Стороженко Л.І., Лапенко О.І. Залізобетонні конструкції в незнімній опалубці: монографія. Полтава: АСМІ, 2008. 312 с.
  • Семко В.О., Прохоренко Д.А. Експериментальні дослідження міцності та деформативності хвилястих сталевих профільованих настилів. Зб. наук. пр. Серія: галузеве машинобудування, будівництво. 2014. Вип. 3(42). С. 161-165.
  • Ватуля Г.Л., Орел Е.Ф., Матящук О.В., Довганик О.Я. Оцінка впливу товщини металевого листа на несучу здатність конструкцій із зовнішнім армуванням. Зб. наук. праць. 2012. Вип. 133. С. 290-295.
  • Semko O.V., Hasenko A.V., Mahas N.N., Sirobaba V.O. Bearing Capacity and Deformability of Three-Component Steel Reinforced Concrete Constructions Made of Lightweight Concrete. International Journal of Engineering & Technology. Vol 7, No 4.8. Special Issue 8. Science Publishing Corporation, RAK Free Trade Zone, 2018. P. 53-57. DOI: https://doi.org/10.14419/ijet.v7i4.8.27213
  • Кочкарьов Д.В. Інженерні методи розрахунку залізобетонних статично невизначних стержневих систем. Зб. наук. пр. УкрДУЗТ. 2017. Вип. 170. С. 98-104.
  • Семко О.В., Гасенко А.В. Оптимізація кроку опор нерозрізних балок сталезалізобетонного самонапруженого перекриття. Актуальні проблеми інженерної механіки: тези доповідей IХ Міжн. конф.(Одеса 17-20 травня 2022 р.). Одеса: ОДАБА, 2022. С. 153-154.
  • Copyright (c) 2022 Alexander Semko, Аnton Hasenkо, Fenko Oleksiy, Viktor Dariienko