DOI: https://doi.org/10.32515/2664-262X.2022.5(36).2.137-145

Probabilistic Analysis of Thermal Reliability of Brick Wall Units of Residential Buildings

Victor Pashynskyi, Mykola Pashynskyi, Stanislav Dzhyrma

Victor Pashynskyi, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: pva.kntu@gmail.com, ORCID ID: 0000-0002-5474-6399

Mykola Pashynskyi, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0002-2669-523X

Stanislav Dzhyrma, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: stas55871@ukr.net, ORCID ID: 0000-0003-2248-1653

Abstract

When the temperature of the inner surface of the enclosing structures falls below the dew point, moisture from the indoor air may condense on it. Thermal characteristics of building materials, outdoor and indoor air temperatures and dew points are random variables or processes. This necessitates a probabilistic assessment of the possibility of thermal failures by the criterion of condensate formation in areas of increased heat transfer of enclosing structures. This work is performed in order to analyze the probabilistic thermal reliability of the characteristic units of brick walls of residential buildings erected in the second half of the 20th century, in the design condition and after thermal modernization by installing additional facade insulation. To analyze the level of thermal reliability, six characteristic units of brick walls were selected. The nodes were analyzed in the initial state, taking into account the uniform facade insulation, as well as with additional local insulation of areas of increased heat transfer. The calculations were performed according to the previously developed author's method, which is based on estimating the probability of falling of the random temperature of the inner surface of the wall below the random temperature of the dew point. The initial data take into account the statistical characteristics of the following random variables: conditional heat transfer resistance of the wall in the zone of heat conduction, dew point temperature, indoor air temperature, outside air temperature for each month of the heating period. The result of the calculation is the probable annual duration of the state of thermal failure according to the criterion of condensate formation on the inner surface of the walls in the critical areas of the nodes. It is established that the units of brick walls with a thickness of 51 cm in the design condition have an insufficient level of thermal reliability. Uniform facade insulation allows to reduce the duration of thermal failures of three nodes from the six considered to values not exceeding 10 minutes during the year. In some areas of the other three nodes (adjacency of the side and top faces of the window, adjacency of reinforced concrete balcony slab) the duration of thermal failures remains unacceptably long even when performing additional local insulation of these areas.

Keywords

walls of residential buildings, heat-conducting inclusions, condensate, thermal failure duration

Full Text:

PDF

References

1. Teplova izolyatsiya budivelʹ [Thermal insulation of buildings]. (2016). DBN V.2.6-31:2016. Effective from 01-04-2017. Kyiv: Ministry of Construction of Ukraine [in Ukrainian].

2. Pashynsykyi, V.A., Dzhyrma, S.O. & Pashynsykyi, M.V. (2020). Teplovi kharakterystyky vuzliv prymykannya vikon do tsehlyanykh ta zalizobetonnykh stin tsyvilʹnykh budivelʹ na terytoriyi Kirovohradsʹkoyi oblasti [Thermal characteristics of window junctions to brick and reinforced concrete walls of civil buildings in the Kirovohrad region]. Tsentral'noukrains'kyj naukovyj visnyk. Tekhnichni nauky – Central Ukrainian Scientific Bulletin. Technical sciences. Issue. 3 (34), 200-209. DOI: 10.32515/2664-262X.2020.3(34).200-209 [in Ukrainian].

3. Pashynskyi, V.A., Nastoyashchyi, V.A. & Plotnikov, O.A. (2014). Pidvyshchennya enerhoefektyvnosti isnuyuchykh zhytlovykh budivelʹ shlyakhom dodatkovoho fasadnoho uteplennya [Improving the energy efficiency of existing residential buildings through additional facade insulation]. Pidvyschennia enerhoefektyvnosti isnuiuchykh zhytlovykh budivel' shliakhom dodatkovoho fasadnoho uteplennia – Resource-saving materials, structures, buildings and structures: Collection of scientific papers, Issue 29, 461-467. [in Ukrainian].

4. Stolarska, A., Strzałkowski, J. & Garbalińska Halina. (2018). Using CFD software for the evaluation of hygrothermal conditions at wall-window perimeters . IOP Conf. Series: Materials Science and Engineering. Vol. 415 [in English].

5. Kariuk, A., Pashynskyi, V., Pashynskyi, M. & Mammadov,a F. (2022) Methods of Probabilistic Assessment of Building Enclosing Structures Thermal Reliability. Proceedings of the 3rd International Conference on Building Innovations. ICBI 2020. Lecture Notes in Civil Engineering, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-030-85043-2_18

6. Methods of choosing of insulation material for insulation [Methods of choosing heat-insulating material for building insulation]. (2013). DSTU B V.2.6-189:2013. Kyiv: Ministry of Regional Development of Ukraine [in Ukrainian].

7. THERM 2.0 Program Description. Berkeley CA 94720 USA, (1998). windows.lbl.gov. Retrieved from https://windows.lbl.gov/sites/default/files/Downloads/therm2.pdf

8. Zakhyst vid nebezpechnykh heolohichnykh protsesiv, shkidlyvykh ekspluatatsiinykh vplyviv, vid pozhezhi. Budivelna klimatolohiia [Protection from dangerous geological processes, harmful operational influences, fire. Construction Climatology.]. (2010). DSTU-N B V.1.1–27:2010. Kyiv: Minrehion Ukrainy [in Ukrainian].

9. Pashynsykyi, V.A., Pushkar, N.V. & Karyuk, A.M. (2012). Temperaturni vplyvy na ohorodzhuvalni konstruktsiyi budivel [Temperature effects on the enclosing structures of buildings] . Odesa: ODABA [in Ukrainian].

10. Systema zabezpechennya nadiynosti ta bezpeky budivelʹnykh ob'yektiv. Zahalʹni pryntsypy zabezpechennya nadiynosti ta konstruktyvnoyi bezpeky budivelʹ i sporud [System for ensuring the reliability and safety of construction objects. General principles of ensuring the reliability and structural safety of buildings and structures]. (2018). DBN V.1.2-14-2018. Kyiv: Ministry of Regional Development of Ukraine [in Ukrainian].

GOST Style Citations

  • ДБН В.2.6-31:2016: Теплова ізоляція будівель . [Чинний від 01-04-2017]. К.: Міністерство будівництва України, 2016. 31 с.
  • Пашинський В.А., Джирма С.О., Пашинський М.В. Теплові характеристики вузлів примикання вікон до цегляних та залізобетонних стін цивільних будівель на території Кіровоградської області . Центральноукраїнський науковий вісник. Технічні науки. Вип. 3(34). 2020. С. 200-209. DOI: https://doi.org/10.32515/2664-262X.2020.3(34).200-209
  • Пашинський В.А., Настоящий В.А., Плотніков О.А. Підвищення енергоефективності існуючих житлових будівель шляхом додаткового фасадного утеплення . Ресурсоекономні матеріали, конструкції, будівлі та споруди : зб. наук. праць. 2014. Вип. 29. С. 461-467.
  • A Stolarska, J Strzałkowski, Halina Garbalińska. Using CFD software for the evaluation of hygrothermal conditions at wall-window perimeters . IOP Conf. Series: Materials Science and Engineering. 2018. Vol. 415. DOI:10.1088/1757-899X/415/1/012046
  • Kariuk A., Pashynskyi V., Pashynskyi M., Mammadova F. (2022) Methods of Probabilistic Assessment of Building Enclosing Structures Thermal Reliability. In: Onyshchenko V., Mammadova G., Sivitska S., Gasimov A. (eds) Proceedings of the 3rd International Conference on Building Innovations. ICBI 2020. Lecture Notes in Civil Engineering, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-030-85043-2_18
  • ДСТУ Б В.2.6-189:2013. Методи вибору теплоізоляційного матеріалу для утеплення будівель. [Чинний від 2014-01-01]. К.: Мінрегіон України, 2014. 51 с.
  • THERM 2.0 Program Description. Berkeley CA 94720 USA, 1998. URL: https://windows.lbl.gov/sites/default/files/Downloads/therm2.pdf (дата звернення: 03.05.2022)
  • ДСТУ-Н Б В.1.1–27:2010. Захист від небезпечних геологічних процесів, шкідливих експлуатаційних впливів, від пожежі. Будівельна кліматологія. Київ, Міністерство регіонального розвитку та будівництва України, 2010. 123 с.
  • Пашинський В.А., Пушкар Н.В., Карюк А.М. Температурні впливи на огороджувальні конструкції будівель. Одеса : ОДАБА, 2012. 180 с.
  • ДБН В.1.2-14-2018. Система забезпечення надійності та безпеки будівельних об'єктів. Загальні принципи забезпечення надійності та конструктивної безпеки будівель і споруд. К.: Мінрегіонбуд України, 2018. 30 с.
  • Copyright (c) 2022 Victor Pashynskyi, Mykola Pashynskyi, Stanislav Dzhyrma