DOI: https://doi.org/10.32515/2664-262X.2022.5(36).2.130-136
Development of a Database Management System of Recommendation Systems for Computer Networks and Computer-integrated Systems
Volodymyr Mikhav, Post-graduate, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: mihaw.wolodymyr@gmail.com, ORCID ID: 0000-0003-4816-4680
Yelyzaveta Meleshko, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: elismeleshko@gmail.com, ORCID ID: 0000-0001-8791-0063
Mykola Yakymenko, Associate Professor, PhD in Physicals&Mathematicals (Candidate of Physical&Mathematical Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: m.yakymenko@gmail.com, ORCID ID: 0000-0002-5759-9603
Yaroslav Shulika, Post-graduate, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: yar.shulika@gmail.com, ORCID ID: 0000-0002-6713-7269
Abstract
The goal of this work is to develop a database management system of the recommendation system for computer networks and computer-integrated systems, as well as to compare the quality of its work with existing systems.
Today, recommendation systems are widely used in computer networks, in particular, in social networks, Internet commerce systems, media content distribution, advertising, etc., as well as in computer-integrated systems, in particular, in the Internet of Things and smart houses. An effective way to present the data required for the recommendation system can reduce the number of resources required and facilitate the development and use of more sophisticated algorithms for compiling lists of recommendations. When storing data from the recommendation system, one of the important parameters of the database is the speed of reading/writing information, as well as the amount of memory required to store data in one format or another. Therefore, it is advisable to use simple data models. This paper investigated the feasibility and effectiveness of using open linear lists to store recommendation system data in computer networks and computer-integrated systems. To test the effectiveness of the proposed method of presenting data in the recommendation system, comparative experiments were conducted with such software as: relational database management system Postgresql, resident repository key-value pairs Redis and graph database Neo4j. Each method of presenting data was tested on the following indicators: time of filling the repository with test data; the amount of memory occupied by the repository after filling; recommendation generation time. The MovieLens data set was used as test data.
The developed database management system based on linear lists is significantly ahead of the existing tools in terms of both speed and efficiency of memory use.
Keywords
databases, database management systems, recommendation systems, computer systems, computer-integrated systems, linear lists
Full Text:
PDF
References
1. “Recommender Systems Handbook” (2010), Editors F. Ricci, L. Rokach, B. Shapira, P. B. Kantor, New York, NY, Springer-Verlag New York, Inc., USA. 842 p.
2. Anitha J., Kalaiarasu M. (2022), “Retraction Note to: Optimized machine learning based collaborative filtering (OMLCF) recommendation system in e-commerce”, J Ambient Intell Human Comput, DOI: https://doi.org/10.1007/s12652-022-04093-4
v3. Priya A.S.B. (2022), “Bhuvaneswaran, R.S. Retraction Note to: Cloud service recommendation system based on clustering trust measures in multi-cloud environment”, J Ambient Intell Human Comput, DOI: https://doi.org/10.1007/s12652-022-04056-9
4. Paul, D., Kundu, S. (2020), “A Survey of Music Recommendation Systems with a Proposed Music Recommendation System”, In: Mandal, J., Bhattacharya, D. (eds) Emerging Technology in Modelling and Graphics, Advances in Intelligent Systems and Computing, Vol. 937, Springer, Singapore, DOI: https://doi.org/10.1007/978-981-13-7403-6_26
5. Valois B.Jr.C., Oliveira M.A. (2011), “Recommender systems in social networks”, JISTEM J.Inf.Syst. Technol. Manag., Vol. 8, No. 3, P. 681-716, URL: https://www.scielo.br/scielo.php?script=sci_arttext&pid=
S1807-17752011000300009
6. Felfernig A., Polat-Erdeniz S., Uran C. et al. (2019), “An overview of recommender systems in the internet of things”, J Intell Inf Syst 52, P. 285-309, DOI: https://doi.org/10.1007/s10844-018-0530-7
7. Nawara D., Kashef R. (2020), “IoT-based Recommendation Systems – An Overview”, 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1-7, DOI: https://doi.org/10.1109/IEMTRONICS51293.2020.9216391
8. Bouazza H., Said B., Laallam F.Z. (2022), “A hybrid IoT services recommender system using social IoT”, Journal of King Saud University – Computer and Information Sciences, DOI: https://doi.org/10.1016/j.jksuci.2022.02.003, URL: https://www.sciencedirect.com/science/article/pii/
S1319157822000362
9. Hills T. (2016), “NoSQL and SQL Data Modeling. Bringing Together Data, Semantics, and Software”, Technics Publications, 260 p.
10. Meier A., Kaufmann M. (2019), “SQL & NoSQL Databases”, Springer Vieweg, Wiesbaden, P. 201-218, URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.468.7089&rep=rep1&type=pdf
11. Cure O., Blin G. (2014), “RDF Database Systems: Triples Storage and SPARQL Query Processing”, Elsevier Science, 256 p.
12. Robinson I., Webber J., Eifrem E. (2016), “Graph Databases: New Opportunities for Connected Data”, O’Reilly Media, 238 p.
13. “Neo4j Documentation” (2021), Official website of the graph database Neo4j, URL: https://neo4j.com/docs/
14. Yi N., Li C., Feng X., Shi M. (2017), “Design and implementation of movie recommender system based on graph database”, 14th Web Information Systems and Applications Conference, IEEE, P. 132-135.
15. Angles R. (2012), “A comparison of current graph database models”, IEEE 28th International Conference on Data Engineering Workshops, IEEE, P. 171-177.
16. Mikhav V.V., Meleshko Ye.V., Yakymenko M.S., Bashchenko D.V. (2021), “The methods of data storingof a recommendation system based on linked lists”, Control, navigation and communication systems, Vol. 4(66), Poltava, Ukraine, P. 59-62. – DOI: https://doi.org/10.26906/SUNZ.2021.4.059 [in Ukrainian]
GOST Style Citations
“Recommender Systems Handbook” (2010), Editors F. Ricci, L. Rokach, B. Shapira, P. B. Kantor, New York, NY, Springer-Verlag New York, Inc., USA. 842 p.
Anitha J., Kalaiarasu M. (2022), “Retraction Note to: Optimized machine learning based collaborative filtering (OMLCF) recommendation system in e-commerce”, J Ambient Intell Human Comput, DOI: https://doi.org/10.1007/s12652-022-04093-4
Priya A.S.B. (2022), “Bhuvaneswaran, R.S. Retraction Note to: Cloud service recommendation system based on clustering trust measures in multi-cloud environment”, J Ambient Intell Human Comput, DOI: https://doi.org/10.1007/s12652-022-04056-9
Paul, D., Kundu, S. (2020), “A Survey of Music Recommendation Systems with a Proposed Music Recommendation System”, In: Mandal, J., Bhattacharya, D. (eds) Emerging Technology in Modelling and Graphics, Advances in Intelligent Systems and Computing, Vol. 937, Springer, Singapore, DOI: https://doi.org/10.1007/978-981-13-7403-6_26
Valois B.Jr.C., Oliveira M.A. (2011), “Recommender systems in social networks”, JISTEM J.Inf.Syst. Technol. Manag., Vol. 8, No. 3, P. 681-716, URL: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-17752011000300009
Felfernig A., Polat-Erdeniz S., Uran C. et al. (2019), “An overview of recommender systems in the internet of things”, J Intell Inf Syst 52, P. 285-309, DOI: https://doi.org/10.1007/s10844-018-0530-7
Nawara D., Kashef R. (2020), “IoT-based Recommendation Systems – An Overview”, 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1-7, DOI: https://doi.org/10.1109/IEMTRONICS51293.2020.9216391
Bouazza H., Said B., Laallam F.Z. (2022), “A hybrid IoT services recommender system using social IoT”, Journal of King Saud University – Computer and Information Sciences, DOI: https://doi.org/10.1016/j.jksuci.2022.02.003, URL: https://www.sciencedirect.com/science/article/pii/S1319157822000362
Hills T. (2016), “NoSQL and SQL Data Modeling. Bringing Together Data, Semantics, and Software”, Technics Publications, 260 p.
Meier A., Kaufmann M. (2019), “SQL & NoSQL Databases”, Springer Vieweg, Wiesbaden, P. 201-218, URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.468.7089&rep=rep1&type=pdf
Cure O., Blin G. (2014), “RDF Database Systems: Triples Storage and SPARQL Query Processing”, Elsevier Science, 256 p.
Robinson I., Webber J., Eifrem E. (2016), “Graph Databases: New Opportunities for Connected Data”, O’Reilly Media, 238 p.
“Neo4j Documentation” (2021), Official website of the graph database Neo4j, URL: https://neo4j.com/docs/
Yi N., Li C., Feng X., Shi M. (2017), “Design and implementation of movie recommender system based on graph database”, 14th Web Information Systems and Applications Conference, IEEE, P. 132-135.
Angles R. (2012), “A comparison of current graph database models”, IEEE 28th International Conference on Data Engineering Workshops, IEEE, P. 171-177.
Міхав В.В., Мелешко Є.В., Якименко М.С., Бащенко Д.В. (2021), “Методи зберігання даних рекомендаційної системи на основі зв’язних списків”, Системи управління, навігації та зв’язку, Т. 4(66), Полтава, С. 59-62. – DOI: https://doi.org/10.26906/SUNZ.2021.4.059
Copyright (c) 2022 Volodymyr Mikhav, Yelyzaveta Meleshko, Mykola Yakymenko, Yaroslav Shulika
Development of a Database Management System of Recommendation Systems for Computer Networks and Computer-integrated Systems
Volodymyr Mikhav, Post-graduate, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: mihaw.wolodymyr@gmail.com, ORCID ID: 0000-0003-4816-4680
Yelyzaveta Meleshko, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: elismeleshko@gmail.com, ORCID ID: 0000-0001-8791-0063
Mykola Yakymenko, Associate Professor, PhD in Physicals&Mathematicals (Candidate of Physical&Mathematical Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: m.yakymenko@gmail.com, ORCID ID: 0000-0002-5759-9603
Yaroslav Shulika, Post-graduate, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: yar.shulika@gmail.com, ORCID ID: 0000-0002-6713-7269
Abstract
Keywords
Full Text:
PDFReferences
1. “Recommender Systems Handbook” (2010), Editors F. Ricci, L. Rokach, B. Shapira, P. B. Kantor, New York, NY, Springer-Verlag New York, Inc., USA. 842 p.
2. Anitha J., Kalaiarasu M. (2022), “Retraction Note to: Optimized machine learning based collaborative filtering (OMLCF) recommendation system in e-commerce”, J Ambient Intell Human Comput, DOI: https://doi.org/10.1007/s12652-022-04093-4
v3. Priya A.S.B. (2022), “Bhuvaneswaran, R.S. Retraction Note to: Cloud service recommendation system based on clustering trust measures in multi-cloud environment”, J Ambient Intell Human Comput, DOI: https://doi.org/10.1007/s12652-022-04056-9
4. Paul, D., Kundu, S. (2020), “A Survey of Music Recommendation Systems with a Proposed Music Recommendation System”, In: Mandal, J., Bhattacharya, D. (eds) Emerging Technology in Modelling and Graphics, Advances in Intelligent Systems and Computing, Vol. 937, Springer, Singapore, DOI: https://doi.org/10.1007/978-981-13-7403-6_26
5. Valois B.Jr.C., Oliveira M.A. (2011), “Recommender systems in social networks”, JISTEM J.Inf.Syst. Technol. Manag., Vol. 8, No. 3, P. 681-716, URL: https://www.scielo.br/scielo.php?script=sci_arttext&pid=
S1807-177520110003000096. Felfernig A., Polat-Erdeniz S., Uran C. et al. (2019), “An overview of recommender systems in the internet of things”, J Intell Inf Syst 52, P. 285-309, DOI: https://doi.org/10.1007/s10844-018-0530-7
7. Nawara D., Kashef R. (2020), “IoT-based Recommendation Systems – An Overview”, 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1-7, DOI: https://doi.org/10.1109/IEMTRONICS51293.2020.9216391
8. Bouazza H., Said B., Laallam F.Z. (2022), “A hybrid IoT services recommender system using social IoT”, Journal of King Saud University – Computer and Information Sciences, DOI: https://doi.org/10.1016/j.jksuci.2022.02.003, URL: https://www.sciencedirect.com/science/article/pii/
S13191578220003629. Hills T. (2016), “NoSQL and SQL Data Modeling. Bringing Together Data, Semantics, and Software”, Technics Publications, 260 p.
10. Meier A., Kaufmann M. (2019), “SQL & NoSQL Databases”, Springer Vieweg, Wiesbaden, P. 201-218, URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.468.7089&rep=rep1&type=pdf
11. Cure O., Blin G. (2014), “RDF Database Systems: Triples Storage and SPARQL Query Processing”, Elsevier Science, 256 p.
12. Robinson I., Webber J., Eifrem E. (2016), “Graph Databases: New Opportunities for Connected Data”, O’Reilly Media, 238 p.
13. “Neo4j Documentation” (2021), Official website of the graph database Neo4j, URL: https://neo4j.com/docs/
14. Yi N., Li C., Feng X., Shi M. (2017), “Design and implementation of movie recommender system based on graph database”, 14th Web Information Systems and Applications Conference, IEEE, P. 132-135.
15. Angles R. (2012), “A comparison of current graph database models”, IEEE 28th International Conference on Data Engineering Workshops, IEEE, P. 171-177.
16. Mikhav V.V., Meleshko Ye.V., Yakymenko M.S., Bashchenko D.V. (2021), “The methods of data storingof a recommendation system based on linked lists”, Control, navigation and communication systems, Vol. 4(66), Poltava, Ukraine, P. 59-62. – DOI: https://doi.org/10.26906/SUNZ.2021.4.059 [in Ukrainian]