DOI: https://doi.org/10.32515/2664-262X.2022.5(36).2.121-129

A Method of Correcting the Output Signal of a Scanning Probe Microscope for the Study of Nanoobjects

Volodymyr Kvasnikov, Mariia Kataeva

Volodymyr Kvasnikov, Professor, Doctor in Technics (Doctor of Technics Sciences), National Aviation University, Kyiv, Ukraine, e-mail: kvp@nau.edu.ua, ORCID ID: 0000-0002-6525-9721

Mariia Kataeva, PhD in Technics (Candidate of Technics Sciences), National Aviation University, Kyiv, Ukraine, e-mail: mariia.kataieva@npp.nau.edu.ua, ORCID ID: 0000-0002-1586-1861

Abstract

Recent advances in nanotechnology include the use of measuring devices that can study physical properties at the atomic and molecular levels and store high-density measurement information. It is proved that the most promising measuring instruments in the nanometer range are measuring devices based on scanning probe microscopes (SPM). Based on the analysis of studies, one of the main problems in working with nanoobjects and nanostructures is associated with ultra-low signal levels and the influence of external destabilizing factors. In this regard, the problem of improving existing and developing new methods of processing the measurement signal of SPM with increased accuracy and speed. The article considers the methods of increasing the accuracy of the output signal of the SPM considering the influence of destabilizing factors. A method of differentiation of combined signals has been developed, which involves the conversion of peaks of a multicomponent signal to reduce noise and minimize the impact of other sources of error from destabilizing factors. The advantage of the developed method is the possibility of its automation and efficient implementation for any measuring devices with a microprobe. Based on the proposed method, an algorithm for separating the combined signals was developed and a method for calculating the resolution of the SPM signal was proposed. An error correction method is proposed that is suitable for digital automated signal processing and helps to increase the accuracy and precision of measurements using SPM. Thus, the developed method of differentiation of combined signals allows to effectively adjust the hardware function of SPM to increase the reliability of recognition of combined peaks of signals while determining their intensities.

Keywords

nanotechnologies, nano-measurements, metrology, methods and means of measurement, scanning probe microscope, signal processing

Full Text:

PDF

References

1. Galkin, V.Ya. & Sayfullin, R.T. (1991). Iteratsionnyy algoritm vosstanovleniya signalov pri nalichii ogranicheniy [Iterative Signal Recovery Algorithm in the Presence of Constraints]. Pryamyye i obratnyye zadachi matematicheskoy fiziki – Direct and inverse problems of mathematical physics, 45-48 [in Russian].

2. Tikhonov, A.N. & Ufimtsev, M.V. (1998). Statisticheskaya obrabotka rezul'tatov eksperimentov – [Statistical processing of experimental results]. Moskow: MGU[in Russian].

3. Kaiser, R.E. & Rackstraw, A J. (1983). Computer chromatography. Vol. 1 .Heidelberg e.a. Alfred Huthig [in English].

4. Voronov, A.A. (1965). Osnovy teorii avtomaticheskogo upravleniya. CH. 1. Lineynyye sistemy regulirovaniya odnoy velichiny.[ Fundamentals of the theory of automatic control. Part 1. Linear control systems of one value.] . Moskow: Energiya [in Russian].

5. Lange, P.K. (2003). Korrektsiya dinamicheskoy pogreshnosti izmeritel'nykh preobrazovateley na osnove splayn-approksimatsii signala [Correction of dynamic error of measuring transducers based on signal spline approximation]. Izvestiya Samarskogo nauchnogo tsentra RAN - Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 2, 162– 168 [in Russian].

6. Irwin, J. & Harl, D. (2003). Peredacha dannykh v setyakh: inzhenernyy podkhod [Data transmission in networks: an engineering approach]. St. Petersburg: BHV-Petersburg [in Russian].

7. Williams ,P.M., Shakesheff, K.M., Davies, M.C., Jackson, D.E., Roberts, C.J. & S. Tendler, J.B. (2012). Blind reconstruction of scanning probe image data. Journal of Vacuum Science and Technology. 2-14 [in English].

8. U.Durig, D.W.Pohl & F.Rohrer (1986). Near-field optical-scanning microscopy. Journal of Applied Physic. 3318-3327 [in English].

9. Khelstrom, K. (2003). Statisticheskaya teoriya obnaruzheniya signalov [Statistical theory of signal detection]. Izd-vo inostrannoy literatury [in Russian].

10. Tankevych, Ye.M., Varsʹkyy, H.M. & Yakovlyeva, I.V. (2011). Vplyv komponentiv vymiryuvalʹnoho kanalu na pokhybky vymiryuvannya vektoriv napruhy [Influence of measuring channel components on voltage vectors measurement errors]. Tekhn. Elektrodynamika – Tech. Electrodynamics, Vol. 6, 41–47 [in Ukrainian]

GOST Style Citations

  • Галкин В.Я. Итерационный алгоритм восстановления сигналов при наличии ограничений / Прямые и обратные задачи математической физики. М.: МГУ, 1991. С. 45-48.
  • Тихонов А.Н., Уфимцев М.В. Статистическая обработка результатов экспериментов. М.: МГУ, 1998. 174 с.
  • R. E. Kaiser & Rackstraw A. J. Computer chromatography, Vol. 1 : By Hüthig, Heidelberg, Basel, New York, 1983. 171 pp.
  • Воронов А.А. Основы теории автоматического управления. Ч. 1. Линейные системы регулирования одной величины. М: Энергия, 1965. 396 с.
  • Ланге П.К. Коррекция динамической погрешности измерительных преобразователей на основе сплайн-аппроксимации сигнала . Известия Самарского научного центра РАН. 2003. Т.5. №2. С. 162 – 168.
  • Ирвин Дж., Харль Д. Передача данных в сетях: инженерный подход. СПб.: БХВ-Петербург, 2003. 448 с.
  • P. M. Williams. Blind reconstruction of scanning probe image data / P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, S. J. B. Tendler . Journal of Vacuum Science and Technology. 2012. B 14 (2).
  • Durig, U., Pohl D.W., Rohrer F.Near-field optical-scanning microscopy . Journal of Applied Physics. 986. Vol.59 (10). P.3318-3327.
  • Хелстром К. Статистическая теория обнаружения сигналов. К. : Изд-во иностранной литературы, 2003. 432 c.
  • Танкевич Є.М., Варський Г.М., Яковлєва І.В. Вплив компонентів вимірювального каналу на похибки вимірювання векторів напруги . Техн. Електродинаміка . 2011. №6. С. 41–47.
  • Copyright (c) 2022 Volodymyr Kvasnikov, Mariia Kataeva