DOI: https://doi.org/10.32515/2664-262X.2022.5(36).1.197-203

Increasing the Supply of Gear Pumps for Vehicles and Agricultural Machinery

Yuriy Kuleshkov, Mykhailo Krasota, Timofey Rudenko, Olexandr Puzyrov, Kyrylo. Zvoryhin

About the Authors

Yuriy Kuleshkov, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kul090455@gmail.com, ORCID ID: 0000-0001-6492-6919

Mykhailo Krasota, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: krasotamv@ukr.net, ORCID ID: 0000-0001-8791-3264

Timofey Rudenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Olexandr Puzyrov, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Kyrylo Zvoryhin, Master, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

The purpose of this publication is to develop a mathematical model of the gear pump, which will develop a method for calculating the gearing of the pump with increased specific feed. One of the promising areas for further development of the gear pump is to increase its supply. And if the design of the pump with high flow is solved by increasing its dimensions - is an engineering problem, then increase the flow while maintaining its dimensions, ie increase the specific flow and specific power of the pump is a rather difficult scientific problem. Using the dimensionless GCUR - it is possible to estimate easily advantages of gearing of any two pairs of gear wheels on giving.From the dependences we see that the GCUR does not depend on the gearing module, which is an unexpected result, because it is known that the module plays a major role in increasing the supply of the pump. It is known that the gearing module plays the role of a scale factor, that is, with the growth of the module increases the RON, but the overall dimensions and weight of the pump increase. Therefore, increasing the RON by increasing the gearing module has its limitations, moreover, this method of increasing the feed is not able to increase the specific feed, and therefore does not increase the technical level of the pump on this parameter The results of the above studies, as well as production experience, show that the most significant effect on the volume utilization of the gear rings has the number of teeth of the pump gears. At the same time, reducing the number of teeth helps to increase the utilization rate of the gear rings. The minimum number of gear teeth z = 8 currently in use in the industry is teeth, which is the classic number of teeth of pump gears with an average value of working volume –q = 32…50 см3.

Keywords

gear pump, gearing, pump feed, pump displacement, gear crown utilization ratio

Full Text:

PDF

References

1. Avrunin, G., Kabanenko, I. & Havil, V (2003). Analiz sovremennogo tehnicheskogo urovny gidroobemnyh peredach [Analysis of the current technical level of hydrostatic transmissions] . Vibracii v tehnike s tehnologiyh – Vibrations in engineering and technology, 4 (30), 3 - 6 [in Ukrainian].

2. Baryshev, V. (1989). Povyshenie tehnicheskogo urovny i nadygnosti gidroprivoda traktorov i selhozmashin v ekspluo-tacii [Improving the technical level and reliability of the hydraulic drive of tractors and agricultural machines in operation] . Extended abstract of doctor's thesis. Chelybinsk [in Russian].

3. Kozerod, Y. (1977). Issledovanie vliyaniya geometricheskih parametrov zacepleniya na kachestvennue pokazateli shesterennogo nasosa [Study of the influence of the geometrical parameters of the gearing on the quality indicators of the gear pump] . Extended abstract of candidate's thesis. Мoskow [in Russian].

4. Bashta, T.M. (1961). Raschety i konstruktsiya samoletnykh gidravlicheskikh ustroystv [Calculations and design of aircraft hydraulic devices]. (3d ed.). Gos. nauch-tehn. izdat. Oborongiz. Мoskow [in Russian].

5. Bashta, T.M. (1974). Ob#emnye nasosy i gidravlicheskie dvigateli gidrosistem [Positive displacement pumps and hydraulic motors for hydraulic systems] . Moskow: Mashinostroenie [in Russian].

6. Kuleshkov, Yu.V. (2004). Otsenka metodov opredeleniya ob`yemnoy podachi shesterennykh nasos NSH [Assessment of methods for determining the volumetric flow of gear pump NSh]. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia sil's'kohospodars'kykh mashyn: zahal'noderzh.mizhvid.nauk.-tekhn. zb. – Design, manufacture and operation of agricultural machinery, Vol. 34 . 178-186 [in Ukrainian].

7. Lur'ye, Z.Ya. & Kovalenko, I.V. (2003). Matematicheskaya model' kachayushchego uzla shesterennogo nasosa, kak ob`yekta mnogokriterial'noy optimizatsii [Mathematical model of the pumping unit of a gear pump as an object of multi-criteria optimization] . Vibratsii v tekhnike i tekhnologiyakh – Vibrations in engineering and technology, 3 (29),-9-13[in Ukrainian]

8. Kulagin, L. Demidov, Y., Prokofiev, V. & Kondakov, A. (1968). Osnovy teorii i konstruirovanija ob#emnyh gidroperedach [Fundamentals of the theory and design of volumetric hydraulic transmissions]. Мoskow: Vysshaya shkola [in Russian]

9. Nasosy shesterenni obemnogo gidropruvodu [Gear pump of volumetric hydraulic drive] . (1998). Tehnichni umovu GSTU 3-25-180-97. Kyiv: Minprompolituka Ukrainy [in Ukrainian]

10. Ydin, E. (1964). Shesterennue nasosy [Gear pumps]. Basic parameters and their calculation . (2d ed.). Moskow Mashinostroenie [in Russian].

11 Yuri V. Kuleshkov, Timofey V. Rudenko, Mikhailo V. Krasota, Miroslav Bosansky & František Toth (2021). Performance features of tooth gearing in gear hydraulic machines. Acta Technologica Agriculturae 2 Nitra, Slovaca Universitas Agriculturae Nitriae, pp. 84–91

GOST Style Citations

  1. Аврунин Г. А., Кабаненко И. В., Хавиль В. В. Анализ современного технического уровня гидрообъемных передач. Вибрации в технике и технологиях. 2003. № 4 (30). С. 3 - 6.
  2. Барышев В.И. Повышение технического уровня и надежности гидропривода тракторов и сельхозмашин в эксплуатации: автореф. дисс. на соискание учен. степени докт. техн. наук. Челябинск, 1989. 26 с.
  3. Козерод Ю.В. Исследование влияния геометрических параметров зацепления на качественные показатели шестеренного насоса: автореферат дисс.. на соискание учен. степени канд. техн. наук. Москва, 1977. 17 с.
  4. Башта Т.М. Расчеты и конструкция самолетных гидравлических устройств. Изд. 3-у перераб. и доп. Гос. научно-технич. издат. Оборонгиз. М.: Машиностроение, 1961. 475 с.
  5. Башта Т.М. Объемные насосы и гидравлические двигатели гидросистем: учебник для ВУЗов. М.: Машиностроение, 1974. 606 с.
  6. Кулешков Ю.В. Оценка методов определения объемной подачи шестеренных насос НШ. Конструювання, виробництво та експлуатація сільськогосподарських машин: загальнодерж. міжвід. наук.-техн. зб. 2004. Вип. 34. С. 178-186.
  7. Лурье З.Я., Коваленко И.В. Математическая модель качающего узла шестеренного насоса, как объекта многокритериальной оптимизации. Вибрации в технике и технологиях. 2003. Вип. 3(29). С.9-13
  8. Основы теории и конструирования объемных гидропередач / Кулагин Л.В. и др; под ред. д.т.н., проф. В.Н. Прокофьева. М.: Высшая школа, 1968. 399 с.
  9. ГСТУ 3-25-180-97. Насоси шестеренні об’ємного гідроприводу. Технічні умови. Мінпром політики України. Київ, 1998. 48 с.
  10. Юдин Е.М. Шестеренные насосы. Основные параметры и их расчет. Изд. 2-e, перераб. и доп. М.: Машиностроение, 1964. 236 с.
  11. Yuri V. KULESHKOV, Timofey V. RUDENKO, Mikhailo V. KRASOTA, Miroslav BOŠANSKÝ, František TÓTH . Performance features of tooth gearing in gear hydraulic machines. Acta Technologica Agriculturae 2 Nitra, Slovaca Universitas Agriculturae Nitriae, 2021, pp. 84–91
Copyright (c) 2022 Yuriy Kuleshkov, Mykhailo Krasota, Timofey Rudenko, Olexandr Puzyrov, Kyrylo. Zvoryhin