DOI: https://doi.org/10.32515/2664-262X.2021.4(35).153-161

Identification of Car damper Strut Supports Defects

Mykhailo Krasota, Ivan Vasylenko, Serhii Mahopets, Oleg Bevz, Ruslan Osin, Oleksandr Krylov

About the Authors

Mykhailo Krasota, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: krasotamv@ukr.net, ORCID ID: 0000-0001-8791-3264

Ivan Vasylenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: vasylenko.ivan@gmail.com, ORCID ID: 0000-0003-0973-0053

Serhii Mahopets, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: magserg@ukr.net, ORCID ID: 0000-0002-1522-4555

Oleg Bevz, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: oleg_bevz@ukr.net, ORCID ID: 0000-0003-1606-2372

Ruslan Osin, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: ruslan_osin@ukr.net, ORCID ID: 0000-0002-8927-5363

Oleksandr Krylov, Assistant, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: alexkrilov14@gmail.com, ORCID ID: 0000-0002-7175-1421

Abstract

The goal of current research is the systematization of information from existent constructions of upper supports, features of support elements load depending on their constructions, analysis aspects, which influence supports attrition and their probable defects, and also giving recommendations for diagnostics. The informational analysis made due to existent upper supports constructions, features of their action in exploitation conditions, considered factors which influence on supports attrition, and their probable defects. Considered supporting bearer and rubber damping elements of damper strut supports fail indications. Fail of rubber damping elements characterized by the range of attributes. Due to car exploitation take place support detail attrition, rubber damping elements of supports waste their elasticity, crack and delaminate from the metal details, rubber damping supports stretch, which leads to support`s contact with upper springs cap and attends with singular thumps. Due to bearing attrition level of rattling and decreasing driving comfort are much higher than due to rubber element attrition. Features of increased bearing attrition are next: rattling by rudder turning occurrence (can also take place on the steering wheel), deterioration of car control. Bearing attrition appears in terms of squeaks and jerks in the process of steering wheel turning in the cars without a power steering. Due to attrition bearing starts to play, thump, and damper piston rod deviates from own axle. During car motion on the small roughs with depleted bearings also perceived rattling from the side of suspender, which sometimes can be difficult to identify, because it is analogous to rattling caused by attrition of other details of suspender or steerage. Offered to realize damper strut supports diagnostics by the way of support` action in a car moving conditions on the pocky surface simulation, to solve this task recommended to use vibration stand for suspender diagnostics. Offered to use the identification of hits and vibrations in foreworn supports via vibration acceleration sensor with later processing.

Keywords

Damper strut, strut support, supporting bearer, suspender diagnostics

Full Text:

PDF

References

1. Aulin, V.V., Hrynkiv, A.V., Chernai, A.Ie., Umanenko, O.O., Monolii, A.O. & Prytula, S.I. (2020). Pidvyshchennia stiikosti ta kerovanosti transportnoho zasobu shliakhom udoskonalennia konstruktyvnykh parametriv pidvisky [Improving the stability and controllability of the vehicle by improving the design parameters of the suspension / Innovative technologies for the development and efficiency of road transport]. Innovatsiini tekhnolohii rozvytku ta efektyvnosti funktsionuvannia avtomobilnoho transportu: Zb. nauk. materialiv mizhnar. naukovo-praktychnoi internet-konferentsii (18-19 lystopada 2020 roku) - Coll. Science. materials international. scientific-practical Internet conference (pp.97-115), Kropyvnytskyi: TsNTU [in Ukrainian].

2. Hnatov, A.V., Kyslovskyi, S.V. & Hehenia Dmitry. (2017). Kerovanyi amortyzator z mahnitnoiu ridynoiu dlia adaptyvnoi pidvisky avtomobilia [Controlled shock absorber with magnetic fluid for adaptive car suspension] . Avtomobil i elektronika. Suchasni tekhnolohii: zb. materialiv V Mizhnarodnoi naukovo-tekhnichnoi Internet-konferentsii (20-21 lystopada 2017 r., m. Kharkiv) – zb. materials of the V International Scientific and Technical Internet Conference (pp.164-165). Kharkiv : KhNADU[in Ukrainian].

3. Raympel, Y. (1983). Shassi avtomobіlya [Сar chassis]. Moscow: Mashinostroyeniye [in Russian].

4. Shaikhov, R.F. & Filkin, N.M. (2011). Raschet optimalnogo ugla naklona uprugogo elementa amortizatsionnykh opor [Calculation of the optimal angle of inclination of the elastic element of the shock-absorbing bearings]. Izhevsk: IzhGTU [in Russian].

5. Shaikhov, R.F. & Filkin, N.M. (2012). Optimizatsiya uprugikh elementov amortizatsionnykh opor legkovogo avtomobilya dlya snizheniya vliyaniya vibratsii na organizm cheloveka [Optimization of elastic elements of shock-absorbing bearings of a passenger car to reduce the effect of vibration on the human body]. Sovremennye problemy nauki i obrazovanija – Modern problems of science and education.[in Russian].

6. Ageykin, Y.S. (2002) Teoriya dvizheniya kolesnoy mashiny po nerovnoy gruntovoy poverkhnosti [Theory of the movement of a wheeled vehicle on an uneven ground surface]. Moscow : MGIU [in Russian].

7. Anil Babu Seelam, Monish Senthil Kumaran, Krishnamurthy H. Sachidananda. (2020). Design and Analysis of Suspension Strut in Automobile Vehicles. Mathematical Modelling of Engineering Problems, Vol. 7, No. 4, December, 2020, pp. 587-596 [in English].

8. S.C.Jain, Pushpendra kumar Sharma, Dhara Vadodaria Mcpherson.(2014). Suspension system - a review. International Journal For Technological Research In Engineering, Vol. 1, Issue 12, August-2014 [in English].

9. Rotenberg, R.V. (1972). Podveska avtomobilya. Kolebaniya i plavnost khoda [Car suspension. Oscillation and smoothness] Moscow: Mashinostroyeniye [in Russian].

10. Tebekin, M.D., Katunin, A.A. & Novikov, A.N. (2014). Metodika provedeniya stendovykh eksperimentov po opredeleniyu tekhnicheskogo sostoyaniya sharovykh opor [Technique for bench experiments to determine the technical state of ball joints]. Mir transporta i tehnologicheskih mashin –The world of transport and technological machines , 2(45), 14-20 [in Russian].

GOST Style Citations

  • Аулін В.В., Гриньків А.В., Чернай А.Є., Уманенко О.О., Монолій А.О., Притула С.І. Підвищення стійкості та керованості транспортного засобу шляхом удосконалення конструктивних параметрів підвіски. Інноваційні технології розвитку та ефективності функціонування автомобільного транспорту: зб. наук. матеріалів міжнар. наук.-практ. інтернет-конф., 18-19 листопада 2020 року. Кропивницький: ЦНТУ, 2020. С.97-115.
  • А. В. Гнатов, С. В. Кисловський, Dmitry Hehenia. Керований амортизатор з магнітною рідиною для адаптивної підвіски автомобіля. Автомобіль і електроніка. Сучасні технології: збірка матеріалів V Міжнар. наук.-техн. Інтернет-конф., 20-21 листопада 2017 р., Харків : ХНАДУ, 2017. С. 164 – 165.
  • Раймпель Й. Шасси автомобіля / Сокр. пер. 1 тома 4 нем. Узд. В.П. Агапова; под. ред. И.Н. Зверева. М.: Машиностроение, 1983. 356 с.
  • Шаихов Р.Ф., Филькин Н.М. Расчет оптимального угла наклона упругого элемента амортизационных опор. Вестник ИжГТУ: Периодический научно-теоретический журнал Ижевского государственного технического университета. 2011. Вып. 1. С. 29-33.
  • Шаихов Р.Ф., Филькин Н.М. Оптимизация упругих элементов амортизационных опор легкового автомобиля для снижения влияния вибрации на организм человека. Современные проблемы науки и образования. 2012. № 1.
  • Агейкин Я. С., Кульчицкий-Сметанка В.М. Теория движения колесной машины по неровной грунтовой поверхности : учеб. пособие . М-во образования Рос. Федерации. Моск. гос. индустр. ун-т, Ин-т дистанц. Обучения М. : МГИУ : ИДО, 2002.
  • Anil Babu Seelam, Monish Senthil Kumaran, Krishnamurthy H. Sachidananda. Design and Analysis of Suspension Strut in Automobile Vehicles. Mathematical Modelling of Engineering Problems. Vol. 7, No. 4, December, 2020, pp. 587-596.
  • S.C.Jain, Pushpendra kumar Sharma, Dhara Vadodaria. Mcpherson suspension system - a review. International Journal For Technological Research In Engineering, Volume 1, Issue 12, August-2014
  • Ротенберг Р. В. Подвеска автомобиля. Колебания и плавность хода . М.: Машиностроение, 1972. 392 с.
  • Тебекин М. Д., Катунин А.А., Новиков А.Н. Методика проведения стендовых экспериментов по определению технического состояния шаровых опор . Мир транспорта и технологических машин. 2014. №2(45). С.14-20.
  • Copyright (c) 2021 Mykhailo Krasota, Ivan Vasylenko, Serhii Mahopets, Oleg Bevz, Ruslan Osin, Oleksandr Krylov