DOI: https://doi.org/10.32515/2664-262X.2019.1(32).138-145

Development of Measurement Channel for Operational Control of the Content of the Magnetic Iron in the Blast Holes

Albert Azaryan, Annait Trachuk, Andrey Gritsenko, Dmitriy Shvets

About the Authors

Albert Azaryan, Professor, Doctor in Technics (Doctor of Technics Sciences), Kryvyi Rih National University, Kryvyi Rih, Ukraine

Annait Trachuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Kryvyi Rih National University, Kryvyi Rih, Ukraine

Andrey Gritsenko, Researcher, Kryvyi Rih National University, Kryvyi Rih, Ukraine

Dmitriy Shvets, Assistant, Kryvyi Rih National University, Kryvyi Rih, Ukraine

Abstract

The article is devoted to the study of improving operational quality control of magnetite ores in explosive wells of magnetic logging. Magnetic logging allows for a detailed study of the structure of the well section by placing a geophysical probe into it. This procedure allows you to determine the content of the useful component in the rock massifs. However, in the conditions of open mining, the measurement of iron content in rock massifs, taking into account disturbing factors affecting the accuracy of control, is a rather complicated task. The work describes the studies conducted for the development of the measuring channel. In the course of the research, a device was designed to control the content of magnetic iron in exploration wells of magnetic logging. The optimal dimensions of the inductive sensor were determined, the voltage-to-current converter circuits and the supply voltage converter with increased efficiency were determined. The developed device was tested in laboratory conditions. In this work, the main functional units were investigated and the schematic diagram of the measuring channel has developed. For an inductive sensor, optimal dimensions are determined while maintaining high sensitivity to the magnetite content in the ore. The voltage-current converters and the power supply voltage converter with increased efficiency were investigated and selected. It has developed the design, manufactured and tested in laboratory conditions experimental samples of measuring channels for controlling the content of magnetite in exploration wells of magnetic logging of large diameter wells.

Keywords

logging, magnetite, measuring channel, blast hole

Full Text:

PDF

References

1. Azaryan, A. & Azaryan, V. (2015). Use of Bourger Lambert Bera law for the operative control and quality management of mineral raw materials. Metallurgical and Mining Industry, 1, 4-9 [in English].

2. Azaryan, A. A., Azaryan, V. A. & Trachuk, A. A. (2013). Quick response quality control of mineral raw materials in the pipeline. European Science and Technology. Materials of the V International scientific and practice conference. Munich, Germany [in English].

3. Díaz-H, K. & Cristancho, F. (2016). Effect of sample thickness on 511 keV single Compton-scattered gamma rays. AIP Conference Proceedings 1753, 080001. DOI: 10.1063/1.4955371 [in English].

4. Azaryan, A., Gritsenko, А., Trachuk, (2018). А. & Shvets, D. Development of a method for operational control over quality of the iron ore raw materials during open and underground extraction. Eastern-European Journal of Enterprise Technologies, 5 (95), 13-19. DOI: 10.15587/1729-4061.2018.144003 [in English].

5. Driga, V.V. (2014). Razrabotka matematicheskoj modeli nakladnogo induktivnogo datchika dlja kontrolja kachestva zhelezorudnogo syr'ja [Development of the mathematical model of the inductive sensor for monitoring the iron ore quality]. Kachestvo mineral'nogo syr'ja [in Russian].

6. Driga, V.V. & Shvydkyj, A.V. (2008). Laboratornoe issledovanie tochnosti izmerenija ustrojstva operativnogo kontrolja kachestva zhelezistyh kvarcitov [Laboratory research of measurement accuracy of a device for operative quality control of ferruginous quartzites]. Kachestvo mineral'nogo syr'ja [in Russian].

7. Driga, V.V. (2011). Issledovanie vlijanija izmenenija prostranstvennogo raspolozhenija rudnogo materiala v magnitnom pole nakladnogo induktivnogo preobrazovatelja na tochnost' nepreryvnogo kontrolja kachestva magnetitovyh rud [Investigation of the influence of changes in the spatial location of the ore material in the magnetic field of an overhead inductive converter on the accuracy of continuous quality control of magnetite ores]. Kachestvo mineral'nogo syr'ja [in Russian].

8. Morkun, V. S., Morkun, N. V., Tron, V. V., & Hryshchenko, S. M. (2017). Investigation of the effect of characteristics of gas-containing suspensions on the parameters of the process of ultrasonic wave propagation. Eastern-European Journal of Enterprise Technologies, 6(5-90), 49–58 [in English].

9. Porkujan, O. V. & Sotnikova, T. G. (2010). Kombinirovannyj metod opredelenija otnositel'nogo soderzhanija magnetita v tverdoj faze zhelezorudnoj pul'py [Combined method for determining the relative magnetite content in the solid phase of iron ore pulp]. Vestnik Nac. tehn. un-ta "HPI" [in Russian].

10. Morkun, V. S. & Morkun, N. V. (2018). Estimation of the Crushed Ore Particles Density in the Pulp Flow Based on the Dynamic Effects of High-Energy Ultrasound. Archives of Acoustic, Vol.43, 1, 61-67 [in English].

11. Marjuta, A. N., Mladeckij, P. K. & Novickij, P. A. (1976). Kontrol' kachestva mineral'nogo syr'ja [Mineral quality control]. Kiev: Tehnіka [in Russian].

GOST Style Citations

  1. Azaryan A., Azaryan V. Use of Bourger Lambert Bera law for the operative control and quality management of mineral raw materials. Metallurgical and Mining Industry. 2015. № 1. P. 4-9.
  2. Azaryan, A. A., Azaryan, V. A., Trachuk A. A. Quick response quality control of mineral raw materials in the pipeline. European Science and Technology. Materials of the V International scientific and practice conference. Munich, Germany. 2013. P. 325–331.
  3. Díaz-H, K., Cristancho, F. Effect of sample thickness on 511 keV single Compton-scattered gamma rays. AIP Conference Proceedings 1753, 080001. 2016. DOI: 10.1063/1.4955371
  4. Azaryan, A., Gritsenko, А., Trachuk А., Shvets D. Development of a method for operational control over quality of the iron ore raw materials during open and underground extraction. Eastern-European Journal of Enterprise Technologies. 2018. 5 (95). P. 13-19. DOI: 10.15587/1729-4061.2018.144003
  5. Дрига В. В. Разработка математической модели накладного индуктивного датчика для контроля качества железорудного сырья. Качество минерального сырья. 2014. С. 112-118.
  6. Дрига В. В., Швыдкый А. В. Лабораторное исследование точности измерения устройства оперативного контроля качества железистых кварцитов. Качество минерального сырья. 2008. С. 257-261.
  7. Дрига В. В. Исследование влияния изменения пространственного расположения рудного материала в магнитном поле накладного индуктивного преобразователя на точность непрерывного контроля качества магнетитовых руд. Качество минерального сырья. 2011. С. 64-80.
  8. Morkun, V., Morkun N., Tron V., & Hryshchenko S. Investigation of the effect of characteristics of gas-containing suspensions on the parameters of the process of ultrasonic wave propagation. Eastern-European Journal of Enterprise Technologies. 2017. 6(5-90). P. 49–58.
  9. Поркуян О. В., Сотникова Т. Г. Комбинированный метод определения относительного содержания магнетита в твердой фазе железорудной пульпы. Вестник Нац. техн. ун-та "ХПИ". 2010. № 12. Харьков. НТУ "ХПИ". С. 29-36.
  10. Morkun, V., Morkun N. Estimation of the Crushed Ore Particles Density in the Pulp Flow Based on the Dynamic Effects of High-Energy Ultrasound. Archives of Acoustics. 2018. Vol.43, №1, P. 61-67.
  11. Марюта А.Н., Младецкий П.К., Новицкий П.А. Контроль качества минерального сырья. Киев: Техніка, 1976. 220с
Copyright (c) 2019 Albert Azaryan, Annait Trachuk, Andrey Gritsenko, Dmitriy Shvets