DOI: https://doi.org/10.32515/2409-9392.2018.31.165-174

Mathematical Model of Dissemination of Informational and Psychological Influences in the Social Network Segment

Ulichev Oleksandr

About the Authors

Ulichev Oleksandr, postgraduate, Central Ukranian National Technical University, Kropyvnytskyi, Ukraine, E-mail: askin79@gmail.com

Abstract

The purpose of the article is to describe the results of research in the direction of modeling the processes of disseminating information influences in the social network segment. The basis of the research is the proposed mathematical model and approaches to the implementation of individual stages of simulation on the basis of the proposed MM in the programmatic form. In particular, there are 3 main stages: modeling the structure of the network, formal description of the network node, implementation of the process of disseminating information. The method for generating a network structure is based on the use of parametric clusters of three types: a click, a group, a leader group. This approach allows you to model a wide range of network segments that are diverse in topology. The network node that simulates the state of the subject in the network is proposed to represent as a class with a fixed set of fields, types of fields and their purpose is justified in the text of the article. The process of dissemination of information is proposed to represent an iterative process in which nodes carry out information impacts on other nodes through the dissemination of information messages. The article proposes the concept of behavioral strategies that determine the criteria for selecting a node for an attack. But there are a few examples of possible behavioral strategies. In the text of the article the key points of the program implementation are described, a diagram of the main classes of the program is presented. The series of experiments were conducted on the program model, the results of which show the adequacy of the model's response to changes in the parameters of individual nodes and network structure. The article presents the results of experiments: the dependence of the rate of propagation on the density of links, the comparison of selected behavioral strategies, the evaluation of the effectiveness of strategies, depending on the number of nodes-generator links.

Keywords

software model, information influence, methods of network generation, models of distribution of information in the network, behavioral strategies

Full Text:

PDF

References

Kermack, W.O. & McKendrick, A.G. (1927). A Contribution to the Mathematical Theory of Epidemics . Proceed- ings of the Royal Society A: Mathematical, Physical and Engineering Sciences (115 (772): 700)

Daley, D.J. & Kendall, D.G. (1965). Stochastic rumors. J. Inst. ath. Appl, Vol. 142, 42-55 .

John Von Neumann J., Burks A.W. (1966). Theory of Self-Reproducing Automata. University of Illinois, Urbana and London.

Gorkovenko, D.K. (2017). Sravnitel'nyj analiz modelej jepidemii i kletochnogo avtomata pri modelirovanii rasprostranenija informacii v social'nyh setjah [Comparison of epidemic models and cellular automata in modeling of diffusion of information in socal]. Nauchno-tehnicheskie vedomosti SPbGPU – Scientific and technical statements SPbGPU, Vol.10, 3, 103-113. doi: 10.18721/jcstcs.10309

Gubanov, D.A. (2009). Obzor onlajnovyh sistem reputacii/doverija [Review of online reputation / trust systems]. Management problems: Internet-konferencija – Internat Conference (25 p.). Moscow: IPU RAN.

Suslova, V.A. & Gorodov, A.A. (2015). Metody modelirovanija social'nyh setej [Methods of modeling social networks]. Reshetnevskie chtenija – Reshetnev readings, 19. 133-134. Retrieved from http://cyberleninka.ru/article/n/metody-modelirovaniya-sotsialnyh-setey.

Gubanov, D.A., Novikov, D.A. & Chhartishvili, A.G. (2009). Modeli vlijanija v social'nyh setjah [Models of influence in social networks]. UBS – UBS, 27. 205-281. Retrieved from http://cyberleninka.ru/article/n/modeli-vliyaniya-v-sotsialnyh-setyah

Hrajvorons'ka, A.M. & Lande, D.V. (2015). Doslidzhennia informatsijnykh potokiv iak dynamichnykh mul'tyahentnykh system [Investigation of information flows as dynamic multi-agent systems].System analysis and information technology ’15. Mizhnarodna naukovo-tekhnichna konferentsia – International Scientific and Technical Conference (pp.62-63). Kyiv: UNK «YPSA» NTUU «KPY».

Lande, D.V., Hrajvorons'ka, A.M. & Berezin, B.A. (2016). Mul'tyahentna model' rozpovsiudzhennia informatsii v sotsial'nij merezhi [A multi-agent model of information dissemination in social networks]. Reiestratsiia, zberihannia i obrobka danykh – Registration, storage and processing of data, Vol.18, 1, 70-77.

GOST Style Citations

  1. Kermack, W.O., McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics // Proceed- ings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 115 (772): 700, 1927.
  2. Daley D.J., Kendall D.G. Stochastic rumors // J. Inst. ath. Appl, 1965, Vol. 142, pp.42-55.
  3. John Von Neumann J., Burks A.W. Theory of Self-Reproducing Automata;University of Illinois, Urbana and London, 1966, pp. 297-302.
  4. Горковенко Д.К. Сравнительный анализ моделей эпидемии и клеточного автомата при моделировании распространения информации в социальных сетях / Д.К. Горковенко // Научно-технические ведомости СПбГПУ. – 2017. –Т. 10, № 3. – C.103-113. doi: 10.18721/jcstcs.10309
  5. Губанов Д.А. Обзор онлайновых систем репутации/доверия [Текст] / Д.А. Губанов // Интернет-конференция по проблемам управления. – М.: ИПУ РАН, 2009. – 25 с.
  6. Суслова В.А. Методы моделирования социальных сетей [Электронный ресурс] / В.А. Суслова, А.А. Городов // Решетневские чтения. – 2015. – №19. – C. 133-134. – Режим доступа: http://cyberleninka.ru/article/n/metody-modelirovaniya-sotsialnyh-setey.
  7. Губанов Д.А. Модели влияния в социальных сетях [Электронный ресурс] / Д.А. Губанов, Д.А. Новиков, А.Г. Чхартишвили // УБС. – 2009. – №27. 205-281– Режим доступа: http://cyberleninka.ru/article/n/modeli-vliyaniya-v-sotsialnyh-setyah
  8. Грайворонська А.М., Ланде Д.В. Дослідження інформаційних потоків як динамічних мультиагентних систем // Системний аналіз та інформаційні технології: матеріали міжнародної науково-технічної конференції SAIT 2015, Київ – К.: УНК «ИПСА» НТУУ «КПИ», 2015. – С. 62-63.
  9. Ланде Д.В. Мультиагентна модель розповсюдження інформації в соціальній мережі [Текст] / Д.В. Ланде, А.М. Грайворонська, Б.А. Березін // Реєстрація, зберігання і обробка даних. – 2016. – Т.18, №1. – С. 70-77.
Copyright (c) 2018 Ulichev Oleksandr