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Analysis of the Methods for Solving Game Puzzles such 
as «Flip-Flop» 

There is a variety of popular puzzles having a goal of reducing an arbitrary binary matrix to either all 
“0” or “1” matrix. In this paper we study methods for solving “Flip-Flop” like puzzles of dimensions  3x3, 3x4, 
4x4  applying tools of logical analysis of situations, combinatorics and discrete mathematics. We found that 
applying the method of sequential analysis of each combination that works well for 3x3 matrices is cumbersome 
and inefficient for matrices of 4x4 and higher dimensionalities. Therefore, we discovered and analyzed 
algorithms named trait selection method, stream method and snake method which work better  

We concluded that in order to find an optimized solution it is helpful to check if each current 
combination matches one of the pre-final ones, or to swap «0»s with «1»s and vise versa. 
computer puzzle games, logical situation analysis, combinatorics, discrete mathematics, trait method, 
stream method, snake method 
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Statement of the problem. Mental games like checkers and chess appeared in ancient 
times as a mental leisure activity. With the rise of educational level they have become more  
sophisticated, and the circle of their fans has been growing. Gradually, games became not 
only a type of leisure, but also an object of scientific research. At the turn of the XIX and XX 
centuries, the Game Theory emerged, and since then it has been constantly evolving finding 
applications in economics, sociology, biology, industry, military and other fields of human 
activity. The state of the art in decision making relies on simulation of game situations, 
behavioral analysis and optimization methods in order to find the best strategy. 

Among the growing number of computer games, the so-called puzzle games are of 
great interest to young people and adults. Solving puzzles requires careful analysis of 
situations and finding logical and mathematical patterns to determine the right sequence of  
___________ 
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actions. Some puzzles stimulate theoretical and practical advances. For example, the 
number of different states of Rubik's cube reaches 43 quintillions of combinations. At the 
same time, it is known that applying so-called «algorithm of God» allows solving the puzzle 
in no more than 20 steps from any state. Rubik's cube became not just a toy, but also an object 
of research for mathematicians and engineers. Even today such puzzles as «Crossbones-
Nulks» and Game of Fifteen that people have played for generations have not lost their 
popularity. At the same time a lot of newcomers, like «Threes!», «2048», «Sudoku» and 
others have appeared. 

The «Flip-Flop» puzzle, that can be found on the internet in different variations 
caught our attention. The essence of the game is as follows. At the beginning of the game 
matrix cells 44  are filled with «0»s or «1»s randomly. When a matrix cell gets activated, 
the values of the entire row and column at the intersection of it are changed to the opposite 
codes, that is, «0» becomes «1» and vice versa. The objective of the game is to bring all 
matrix cells either to «0»s or «1»s (depending on the given goal) in a finite number of steps. 
There are several modifications of the game that differ by cell content; instead of «0» and 
«1»s game designers use flowers, berries ("Fruity Flip Flop") and the like. There are also rule 
differences when the activation of a cell changes the values of the adjacent cells as opposed to 
changing the entire row and column. 

This paper explores the original version of the game, i.e. when all values of adjacent 
row and column get changed. 

Analysis of recent researches and publications. As the Flip-Flop experience 
shows, achieving the goal of arriving to the matrix with all 0s (or 1s) from an arbitrary initial 
combination in a finite number of steps is not an easy problem. It is hard to foresee what 
combination occurs in two or three steps ahead even in matrix 44  because seven out of 
sixteen cells change their values at each step. In order to solve the puzzle we have developed 
and analyzed an algorithm that allows us to reach the solution of forming either all-0s or all-
1s matrix in minimal number of steps for any m  n matrix. 

Studying references like Game Theory [1, 2], Discrete Math [3], Artificial 
Intelligence [4], Combinatorics [5], and experiences with similar puzzles at braingames.ru 
convinced us to use simulation, formal logic and combinatorics. 

Statement of the objective. The aim of the article is to determine the methods for 
solving the problem of reducing the arbitrary combination of matrix codes, with a minimum 
number of steps, to one "0" or "1" and to build the algorithms that will provide this process. 

The main material.  
Terminology. We use the following notation: 
- binary numbers 0 or 1 are used to fill matrix cells; 
- (i=1,2,3…m) denotes <i-th> row of the matrix; 
- (j=1,2,3…m) denotes <j-th> column of the matrix; 
-  (i,j) denotes i,j matrix cell; 
- instead of binary code (of a row) hexadecimal code may be used. Therefore instead 

of representing a matrix as a collection of cells we may represent it as a list of (hex) codes of 
its rows; 

- activated cell is denoted by either 0. or 1.; 
- “zero” matrix - matrix consisting of 0s; 
- “unit” matrix - matrix consisting of 1s; 
- when a cell gets activated, the content of each cells in its row and column gets 

inverted («0»   becomes «1» and vise versa). 
- an arbitrary combination of the matrix at the beginning of the game is generated 

programmatically using a binary random number generator; 
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- since algorithms for the formation of «zero» and «unit» matrices are similar, we 
focus on obtaining «zero» matrix. 

Analysis of the "Flip-Flop" Solution for 3x3 Matrix. 
Before proceeding with the study of a solution for matrices of 33  size, we will 

analyze forming a «zero» 22 matrix. In doing so, we will simulate all possible initial 
combinations and form the final «zero» matrix from them by analyzing the current 
configuration and determining the strategy for the next step (Fig. 1). 

1. 0 0 1 0 0 1 1 1 0 0 0 1. 1 0 0. 1 1 1 0 0 0 1) 0 1  1 1.  0 0 2) 0 0. 1. 1 0 0 3) 1 1 0 1 0 0.  1. 1 0 0 
 

1 0. 0 1 1. 1 0 0     1. 0 0 1. 1 0 0 0   4) 0 0  0. 1 1 0  0 0       5) 0 0 1 0 1. 1  0 0    
  

Figure 1 – The sequence of formation of «zero» matrix with different initial combinations 
Source: author's development 

 
The analysis of the obtained solutions shows: 
- in order to reach the «zero» combination, it necessary to arrive to the pre-final 

combination in which activation of the critical cell results in forming the «zero» matrix; 
- all possible pre-final combinations are formed at the intersection of matrix cells, so 

their number corresponds to the number of the matrix cells (for the matrix 422 ); 
- the search strategy is to find one of the four final combinations, which makes it 

easier to solve the problem; 
- examples 4 and 5 show that starting from the same input, the sequence of steps for 

reaching one of the final combinations may be different but the result is the same. 
It follows that for the matrix 33  there are 9 pre-final combinations. All of them can 

be expressed number triplets:  7-4-4; 7-1-1; 4-4-7; 1-1-7; 7-2-2; 2-2-7; 4-7-4; 1-7-1; 2-7-2. 
 

1 2 3 4 5 6 7 8 9 
1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0
1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1
1 0 0 

 

0 0 1 

 

1 1 1 

 

1 1 1

 

0 1 0

 

1 1 1

 

1 0 0

 

0 0 1 

 

0 1 0
 

 
Figure 2 – Table of final combinations for matrix 3x3  

Source: author's development 
 
Searching for a long time for ways to reach one of these combinations did not give 

positive results. At the same time, the following has been established: the modulo 2 sum of 
columns and rows of all pre-final combinations is equal (sum 2 = 72); if the current 

combination is even (sum 2 = 0) then the next combination is odd, so the pre-final 
combination must necessarily be even; when activating an arbitrary cell, for example (2,3), in 
the current combination (let’s call it combination A) and then the same cell in the resulting 
combination, then the first combination (i.e. combination A) will appear again; if in the odd 
combination (2-5-0) sequentially activate cells (1,1) and (1,2), then two new even 
combinations will be formed, if in the first of them (5-1-4) activate cell (1,2), and in the 
second (5-7-2) activate cell (1,1), we will also obtain new, but absolutely identical 
combinations (2-3-6) (Fig. 3); this partly explains why the process may be infinite, that is the 
sequence of actions results in the same combinations making it cyclical. 
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Sum 2  1 1 1  0 0 0  1 1 1 Sum 2  1 1 1  0 0 0  1 1 1
0. 1 0 1 0. 1 0 1 0 0 1. 0 1. 0 1 0 1 0
1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 1 11 
0 0 0

 
1 0 0 1 1 0

2 
0 0 0 0 1 0 

 
1 1 0

 
Figure 3 – Repeatability of combinations 

Source: author's development 
 
Let’s get back to the search for combinations which lead to forming  the pre-final and 

final matrices. The analysis has revealed the following: 
- activation of the cells with the code «0» in each of the 9 pre-final combinations 

(Figure 2) result in 6 new types of matrices (Fig. 4, Examples 1-3) having 6 copies of each 
(4 9=36), which differ from each other by rows with codes 3 5 6 (3-6-5, 6-5-3, 5-3-6, 6-3-5, 
3-5-6, 5-6-3); 

- activations of the cells with code «1» in each of the 9 pre-final combinations (Fig. 
2) result in 18 new matrix types (Fig. 4, Examples 4-9), which differ from each other by rows 
with codes 0 3 3, 0 5 5 and 0 6 6; 

- when performing reverse actions - activation of cells with codes «1» in front of the 
pre-final matrices with rows having codes 3 5 6 (Fig. 5, examples 1-3) different combinations 
of the pre-final matrices are formed (Fig. 2); 

- when performing reverse actions - activation of cells with codes «1» in front of the 
pre-final matrices with the rows having codes 0 3 3, 0 5 5 and 0 6 6 (Fig. 5, examples 4-9) 
different combinations of the pre-final matrices are also formed ( Fig. 5, examples 4-9); 

- activations of the cells with code «0» in front of the pre-final matrices with rows 
having codes 3 5 6 result in forming the pre - pre final matrix with combinations of rows 
having codes 1 2 4 (Fig. 6, Examples 1-3); 

- activations of cells with code «1» in front of the pre-final matrices with row codes 0 
3 3, 0 5 5 and 0 6 6 result in forming the pre-pre pre-final matrix with row codes 1 2 4 (Fig. 6, 
examples 4-9); 

- when performing reverse actions - activation of cells with codes «1» in front of the 
pre-pre pre-final matrices with row codes 1 2 4 the pre pre-final matrix is formed with row 
codes 3 5 6 (Fig. 7, Examples 1-3); 

- when performing reverse actions - activation of cells with codes «0»  in front of the 
pre pre pre-final matrices with row codes 1 2 4 the pre pre-final matrix is formed with row 
codes 0 3 3, 0 5 5 and 0 6 6 (Fig. 7, examples 4-9). 

Matrix Forming with row codes 3 5 6 by activation of cells with code «0» 
(4) 1 0. 0 (3) 0 1 1 (4) 1 0 0. (3) 0 1 1 (2) 0 1 0 (6) 1 1 0
(4) 1 0 0 (6) 1 1 0 (4) 1 0 0 (5) 1 0 1 (7) 1 1 1 (3) 0 1 11. 
(7) 1 1 1 

 
(5) 1 0 1 

2. 
(7) 1 1 1 (6) 1 1 0

3.
(2) 0. 1 0 

 
(5) 1 0 1

Matrix Forming with row codes 0 3 3, 0 5 5  0 6 6, 
(4) 1. 0 0 (3) 0 1 1 (4) 1 0 0 (0) 0 0 0 (4) 1 0 0 (6) 1 1 0
(4) 1 0 0 (0) 0 0 0 (4) 1. 0 0 (3) 0 1 1 (4) 1 0 0 (6) 1 1 04. 
(7) 1 1 1 

 
(3) 0 1 1 

5. 
(7) 1 1 1 (3) 0 1 1

6.
(7) 1 1. 1 

 
(0) 0 0 0

by activation of cells of pre-final matrices with code «1» 
(7) 1 1 1  (5) 1 0 1 (7) 1 1 1 (5) 1 0 1 (7) 1. 1 1 (0) 0 0 0
(2) 0 1. 0  (5) 1 0 1 (2) 0 1 0 (0) 0 0 0 (2) 0 1 0 (6) 1 1 07. 
(2) 0 1 0  (0) 0 0 0 

8. 
(2) 0 1. 0 (5) 1 0 1

9.
(2) 0 1. 0 

 
(6) 1 1 0

 
Figure 4 – Examples of forming matrices with row codes 3 5 6, 0 3 3, 0 5 5, and 0 6 6 

Source: author's development 
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Forming of the Pre-final Matrix with row codes 3 5 6 by activation of cells with code«1» 

(3) 0 1 1. (4) 1 0 0 (3) 0 1 1 (7) 1 1 1 (6) 1 1 0 (7) 1 1 1
(6) 1 1 0 (7) 1 1 1 (5) 1. 0 1 (2) 0 1 0 (3) 0 1 1. (4) 1 0 01. 
(5) 1 0 1 

 
(4) 1 0 0 

2. 
(6) 1 1 0 (2) 0 1 0

3.
(5) 1 0 1 

 
(4) 1 0 0

Forming of the Pre-final Matrix with row codes 0 3 3, 0 5 5 and 0 6 6, 
(3) 0. 1 1 (4) 1 0 0 (0) 0 0. 0 (7) 1 1 1 (6) 1 1 0. (1) 0 0 1
(0) 0 0 0 (4) 1 0 0 (3) 0 1 1 (1) 0 0 1 (6) 1 1 0 (7) 1 1 14. 
(3) 0 1 1 

 
(7) 1 1 1 

5. 
(3) 0 1 1 (1) 0 0 1

6.
(0) 0 0 0 

 
(1) 0 0 1

by activation of cells with code «0» 
(5) 1 0. 1  (2) 0 1 0 (5) 1 0. 1 (2) 0 1 0 (6) 1 1 0 7) 1 1 1
(5) 1 0 1  (7) 1 1 1 (0) 0 0 0 (2) 0 1 0 (0) 0 0 0 (1) 0 0 17. 
(0) 0 0 0  (2) 0 1 0 

8. 
(5) 1 0 1 (7) 1 1 1

9.
(6) 1 1 0. 

 
(1) 0 0 1

 
 

Figure 5 – Examples of the formation of final matrices from before the finite 
Source: author's development 
 

Forming of the matrices with row codes 1 2 4 by activation of cells having code «0» in the 
matrices with row codes3 5 6, 

(3) 0. 1 1 (4) 1 0 0 (3) 0 1 1 (1) 0 0 1 (6) 1 1 0 (4) 1 0 0
(6) 1 1 0 (2) 0 1 0 (5) 1 0. 1 (2) 0 1 0 (3) 0 1 1 (1) 0 0 11. 
(5) 1 0 1 

 
(1) 0 0 1 

2. 
(6) 1 1 0 (4) 1 0 0

3.
(5) 1 0. 1 

 
(2) 0 1 0

Forming of the matrices with row codes 1 2 4 by activation of cells having code «1» in 
(3) 0 1. 1 (4) 1 0 0 (0) 0 0 0 (2) 0 1 0 (6) 1 1 0 (2) 0 1 0
(0) 0 0 0 (2) 0 1 0 (3) 0 1. 1 (4) 1 0 0 (6) 1. 1 0 (1) 0 0 14. 
(3) 0 1 1 

 
(1) 0 0 1 

5. 
(3) 0 1 1 (1) 0 0 1

6.
(0) 0 0 0 

 
(4) 1 0 0

the matrices with row codes  0 3 3, 0 5 5  0 6 6. 
(5) 1. 0 1  (2) 0 1 0 (5) 1 0 1 (1) 0 0 1 (6) 1 1 0 (4) 1 0 0
(5) 1 0 1  (1) 0 0 1 (0) 0 0 0 (4) 1 0 0 (0) 0 0 0 (2) 0 1 07. 
(0) 0 0 0  (4) 1 0 0 

8. 
(5) 1. 0 1 (2) 0 1 0

9.
(6) 1 1. 0 

 
(1) 0 0 1

 
Figure 6 – Examples of forming matrices  with 1, 2, 4 row codes from the pre pre-final matrices 

Source: author's development 
 
Thus, we reached a cycle: in order to output «zero» matrix, it is necessary to get to 

one of 9 pre-final matrices, however we can get to any of them only from the pre pre-final 
matrix with row codes 3 5 6, 0 3 3, 0 5 5 and 0 6 6; the pre pre-final matrices are formed from 
matrices with row codes 1 2 4, and the latter are themselves formed from the pre pre-final 
matrices with row codes 3 5 6, 0 3 3, 0 5 5 and 0 6 6. Hence, we can conclude that the 
solution to the problem for 33  matrix only exists if the row codes generated by the random 
number generator match one of the 30 possible codes 1 2 4, 3 5 6, 0 3 3, 0 5 5, and 0 6 6, in 
all other cases the problem has no solution. 



ISSN 2664-262X                                                     .  , 2019, . 2(33) 

 

 195

Forming of the matrices with row codes 3 5 6 by activation of cells having code «1» in the 
matrices with row codes 1 2 4.  

(4) 1. 0 0 (3) 0 1 1 (1) 0 0 1 (3) 0 1 1 (4) 1 0 0 (6) 1 1 0
(2) 0 1 0 (6) 1 1 0 (2) 0 1. 0 (5) 1 0 1 (1) 0 0 1 (3) 0 1 11. 
(1) 0 0 1 

 
(5) 1 0 1 

2. 
(4) 1 0 0 (6) 1 1 0

3.
(2) 0 1. 0 

 
(5) 1 0 1

Forming of the matrices with row codes 0 3 3, 0 5 5 and 0 6 6, 
(4) 1 0. 0 (3) 0 1 1 (4) 1 0 0 (0) 0 0 0 (2) 0 1 0 (6) 1 1 0
(2) 0 1 0 (0) 0 0 0 (4) 1. 0 0 (3) 0 1 1 (1) 0. 0 1 (6) 1 1 04. 
(1) 0 0 1 

 
(3) 0 1 1 

5. 
(7) 1 1 1 (3) 0 1 1

6.
(4) 1 0 0 

 
(0) 0 0 0

by activation of cells having code «0» in the matrices with row codes 1 2 4. 
(2) 0. 1 0  (5) 1 0 1 (1) 0 0 1 (5) 1 0 1 (4) 1 0 0 (6) 1 1 0
(1) 0 0 1  (5) 1 0 1 (4) 1 0 0 (0) 0 0 0 (2) 0 1 0 (0) 0 0 07. 
(4) 1 0 0  (0) 0 0 0 

8. 
(2) 0. 1 0 (5) 1 0 1

9.
(1) 0 0. 1 

 
(6) 1 1 0

 
Figure 7 – Examples of forming the pre pre-final matrices from matrices with row codes 1 2 4 

Source: author's development 
 
Search for algorithms for solving the "Flip-Flop" problem for the 4x4 matrix. 

Following similar steps as in the previous section, we first determine the pre-final 
combinations. Their number corresponds to the number of cells in the matrix 

1644nmN , and the configurations correspond to cells at the intersection of rows 
and columns with either codes «1» or «0». For each of the 16 pre-final combinations, you can 
create 15 pre pre-final ones, the total number of which is equal 3001615 . It is hard to 
keep them in memory for a regular person. Getting to the pre-final or the pre pre-final 
combinations by analyzing the current combinations and determining the optimal solution for 
each subsequent step proved to be quite difficult as at each step the current matrix codes are 
changed to the opposite in 7 cells out of 16, so tracing the result for 2-3 steps is even harder. 
Therefore we abandoned attempts to find the best next step at each combination focusing 
instead at a search for an algorithm capable to find a solution in finite number of steps. The 
first algorithm was inspired by the following analogy: a reader wants to finish a book quickly 
and she cares only about her favorite character, so she opens the first page, finds a section 
talking about her favorite character, reads it and moves to the next page. 

Method of sign allocations.. Since the number of steps to obtain «zero» matrix in 
this method varies and can exceed two dozen, in order to make the explanation less 
cumbersome and more visible, we are going to expand the whole sequence of matrix 
combinations in the long rows (Fig. 9), and use the tables only for demonstration of the first 
few steps (Fig. 8). 

1-st step  2-nd step  3-d step   4-th step  5-th step  6-th step  
(8) 1. 0 0 0 0 1. 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 
(2) 0 0 1 0 1 0 1 0 1. 1 1 0 0 0 0 1. 1 1 1 0 1 0 1 0 
(1) 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1. 0 0 1 0 1. 1 
(7) 0 1 1 1 

 

1 1 1 1 

 

1 0 1 1 0 0 1 1 0 0 1 0

 

0 1 1 0 
  

Figure 8 – Sequence of actions according to the method of signs 
Source: author's development 

 
The algorithm for implementing the sequence of actions by the method of signs is as 

follows. If you want to get to the «zero» combination, you need to activate the necessary cells 
with code «1», in the «unit» combination then you need to activate cells with code «0» . Your 
chosen code serves as a sign. Consider an option to getting to «zero» combination (Fig. 8, 9). 
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The first step begins with activation of the cell with the code «1» in the input matrix (marked 
in bold type with a dot). 

Note: You can start with an arbitrary cell with code «1» and at an arbitrary step of the game. 
When a new combination is detected, going clockwise we skip all cells with code 

«0» until we detect the first cell with code «1» in the same or next row, but farther from the 
active cell in the previous combination, and activate it. 

We make the next steps following the same rule. If the last activated cell with code 
«1» was in the last (i.e. fourth) row, and after it in the same row of the new combination there 
are no cells with code «1»  then going clockwise we identify the first cell with code «1» in the 
first line of this combinations and activate it (see Figure 9 transitions from 7 to 8, from 14 to 
15 and from 23 to 24 steps). We continue to perform similar steps until «zero» combination 
appears. This method is not optimal, but guarantees finding a solution to the problem. 

i/o  1-st row  2-nd row  3-d row  4-th row 16-th row code
1 1. 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 8 2 1 7 
2 0 1. 1 1 1 0 1 0 1 0 0 1 1 1 1 1 7 A 9 F 
3 1 0 0 0 1. 1 1 0 1 1 0 1 1 0 1 1 8 E D B
4 0 0 0 0 0 0 0 1. 0 1 0 1 0 0 1 1 0 1 5 3 
5 0 0 0 1 1 1 1 0 0 1. 0 0 0 0 1 0 1 E 4 2 
6 0 1 0 1 1 0 1 0 1 0 1. 1 0 1 1 0 5 A B 6 
7 0 1 1 1 1 0 0 0 0 1 0 0 0 1. 0 0 7 8 4 4 
8 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1. 1 3 C 0 B
9 0 0 0 1. 1 1 1 0 0 0 1 0 0 1 0 0 1 E 2 4 
10 1 1 1 0 1. 1 1 1 0 0 1 1 0 1 0 1 E F 3 5 
11 0 1 1 0 0 0 0 0 1. 0 1 1 1 1 0 1 6 0 B D
12 1 1 1 1 1 0 0 0 0 1. 0 0 0 1 0 1 F 8 4 5 
13 1 0 1 0 1 1 0 0 0 1 1. 0 1 1 0 0 A C 6 C
14 1 0 0 0 1 1 1 0 0 1 0 0 0 0 1. 1 8 E 4 3 
15 1. 0 1 0 1 1 0 0 0 1 1 0 1 1 0 0 A C 6 C
16 0 1. 0 1 0 1 0 0 1 1 1 0 0 1 0 0 5 4 E 4 
17 1 0 1. 0 0 0 0 0 1 0 1 0 0 0 0 0 A 0 A 0 
18 0 1 0 1. 0 0 1 0 1 0 0 0 0 0 1 0 5 2 8 2 
19 1 0 1 0 0 0 1. 1 1 0 0 1 0 0 1 1 A 3 9 3 
20 1 0 0 0 1 1 0 0 1. 0 1 1 0 0 0 1 8 C B 1 
21 0 0 0 0 0 1 0 0 0 1. 0 0 1 0 0 1 0 4 4 9 
22 0 1 0 0 0 0 0 0 1 0 1. 1 1 1 0 1 4 0 B D
23 0 1 1 0 0 0 1 0 0 1 0 0 1. 1 1 1 6 2 4 F 
24 1. 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 E A C 0 
25 0 0 0 1. 0 0 1 0 0 1 0 0 1 0 0 0 1 2 4 8 
26 1 1 1 0 0 0 1. 1 0 1 0 1 1 0 0 1 E 3 5 9 
27 1 1 0 0 1 1 0 0 0 1. 1 1 1 0 1 1 C C 7 B
28 1 0 0  0 1 0 0 0 1 0 0 0 1. 1 1 1 8 8 8 F 
29 

 

0 0 0 0 

 

0 0 0 0

 

0 0 0 0

 

0 0 0 0

 

0 0 0 0 
  

Figure 9 – Illustration of the Sign Method Algorithm 
Source: author's development 
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Though the algorithm does not find the optimal solution, its analysis gives us useful 
insights. While tracing each step of the algorithm, we repeatedly identified combinations 
which could reliably bring us to the pre-final and final combinations much earlier than the 
algorithm did. This may be explained by the fact that the player does not analyze the current 
combination, rather she activates a cell that is provided by the rule, and not the one that is 
required by the logic. Therefore, when applying this algorithm, it is advisable not to mechanically 
follow its steps but to analyze each current combination in order to timely detect the pre-final 
one thus effectively impacting the algorithm flow in order to finish the game earlier. This will 
significantly reduce the number of steps and make the game much more interesting. 

We tried finding more optimal algorithms that are based on the rigid sequence of 
actions. We called the first of them as the «stream» method. We have identified several 
modifications and optimization paths for it. 

The «stream» method. The essence of this method for the 4x4 matrix is as follows.  
All cells with code «0»  of the input matrix are numbered from the first row to the 

last, traversing them clockwise (similar to the flow of the stream) (Fig. 10, 11).  
Below we only use addresses of the numbered input cell. We activate the cell with 

number 1 in the input combination and get a combination with number 1 (see Figure 11). In 
the resulting combination we activate the cell that is located at the address of the cell with 
number 2, regardless of its contents. In combination number 2 we activate the cell with number 
3 and so on. After activating the last numbered cell of the input matrix, we get a combination 
(No. 8 in Figure 11), which we set as the basis for further action. 

 
stream   snake 

 

Figure 10 – Cell treversal type 
Source: author's development 

 

 Input  1  2  3  4  5  
1 01. 1 02 0 1 0 1. 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0
05 1 1 03 0 0 1 0 0 0 1 1. 1 1 0 0 1. 1 0 1 0 0 1 0
1 1 06 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0. 0 

08 1 07 04 

 

0 0 0 0 

 

0 0 0 1 0 0 0 0. 1 1 1 1 

 

0 1 1 1
 6  7  Basic  1  2  3  

0 0 0 0 0 0 1 0 11. 0 12 0 0 1 0. 1 1 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 13 0 14 0 0 0 1 0 0. 0 0 0 1 1 1. 1
1 1 1 1 1 1 0 1 0 15 0 16 1 1 0 1 1 1 1 1 0 1 1 1 

0 1 0. 1 

 

1. 0 1 0 

 

0 17 0 18 1 1 0 1 1 1 1 1 

 

0 1 1 1
 4  5  6  7  8    

0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 
0 1. 0 1 1 0 1 0. 0 1 0 1 0 0 0 1 0 0 0 0  

0 1 0 1 

 

0 0 0 1 

 

0 0. 0 0 1 1 1 1. 0 0 0 0 

 

The goal is 
achieved in 

16 steps 
 

 

 

 
Figure 11 - Algorithm for solving the problem by the stream method 

Source: author's development 
 



ISSN 2664-262X                                                                Central Ukrainian Scientific Bulletin. Technical Sciences, 2019, Col.2(33) 

 

 198

Now we enumerate its cells which have code «1» by sequentially traversing the rows 
starting from the beginning of the first row to its end, then from the end of the second row to 
the beginning of it, again from the beginning of the third row to its end and from the end of 
the fourth row to its beginning. 

This traversal looks like the snake movement (Fig. 10). Starting from the base 
combination we keep executing the sequence of steps of the described above algorithm by 
activating the cell with the next sequential number. Again we get combination number 1. We 
activate its cell with number 2, etc. After 16 steps we get the desired result - the «zero» combination. 

The «snake» method differs from the «stream» method only by the way of 
traversing the positions of the input matrix while enumerating the cells. The cells of the input 
matrix and the following base matrix are numbered identically along the trajectory of the 
snake movement (Fig. 10). The sequence of actions in both algorithms is the same. In all 
combinations, namely incoming, base, and current, cells with the number and location of 
which are determined in the input and base matrices are activated. The method for 
determining the cell numbers and the traversal algorithm is presented in Fig. 12. 

The simulation results showed that in order to reach the zero matrix by the snake 
method it is possible to start enumeration of the input matrix cells either with code «0» cells 
or code «1» cells. In any case the activation begins with the first numbered cell of the input 
matrix. In the base combination, cells with code «1» are enumerated. To reach the «unit» 
combination the cells with the code «0» of the input and base combinations are enumerated. 

If the input matrix has the number of cells with zeros greater than 7, then it is 
desirable to change them to codes «1» at the first step. To do this, you need to activate a cell 
at the intersection of a row and a column with the largest number of zero cells. Then the 
resulted combination shall be taken as the input matrix and you need to perform the above 
sequence of actions on it. This procedure will reduce the number of steps, and therefore 
optimizes the process. An example of optimizing the exit process from the input matrix 
given in Fig. 12 to «zero» matrix is shown in Fig. 13. As the figure demonstrates the total 
number of steps is decreased by 2 in comparison to the example presented in Fig. 12, and the 
number of steps to reach the "zero" matrix from the simplified input matrix is 12. 

 Input  1  2  3  4  5  
1 01. 1 02 0 1 0 1. 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0
1 03 1 1 1 1 1 1 1 1. 1 0 0 0 0 1 1 0 0 1 1 1 0 1
04 05 06 1 0 1 0 1 0 1 0 0 0. 0 0 0 1 1. 1 1 0 0 0. 0 

09 08 1 07 

 

0 1 1 0 

 

0 0 1 1 0 0 1 1 1 0 1 1 

 

1 1 1 1
 6  7  8  Basic  1  2  

0 0 0 0 0 0 0 1 0 1 0 1 11. 12 0 13 0 0. 1 0 1 1 0 1.
1 1 1 1 1 1 1 0 1 0 1 0 0 0 14 0 1 0 1 0 1 1 1 0
1 1 1 1 1 1 1 0 1 0 1 0 0 0 15 0 1 0 1 0 1 1 1 0 

1 1 0 1. 

 

0 0. 1 0 

 

1, 1 0 1 0 0 16 0 1 0 1 0 

 

1 1 1 0
 3  4  5  6      

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1. 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 1 1 1 0. 1 0 0 1. 0 0 0 0 0 

1 1 1 1 

 

1 1 0 1 

 

1 1 1 1 0 0 0 0

   

The goal is 
achieved in 

15 steps 
 

 

 

 
Figure 12 - Algorithm for solving the problem by the snake method 

Source: author's development 
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Analysis of feasibility for solving the "Flip-Flop" problem for the 3x4 matrix. 
The number of final combinations for the 3x4 matrix is equal to the number of its cells 

1243 . Since the 12 pre-final combinations can be obtained from 1321112  the pre 
pre-final ones, the probability of solving such problem is high. 

Fig. 14 shows an example of solving the problem by using the above-mentioned 
«snake» method which can find a solution in 10 steps. 

 
   Input  1  2  3  Basic  

1 0 1 0 1 1 1 0.1 0 0 0 1 0 0 0 0 0 0 0 1 1.1 0 0 12

1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 14 13 0
0 0. 0 1 1 1 1 02 1 1 1 1. 0 0 0 0 0 0 0 1 15 0 0 16 

0 0 1 0 

 

04 1 1 03 

 

0 1 1 1 0 1 1 0. 1. 0 0 1 

 

0 18 17 0
 1  2  3  4  5  6  

0 1 1 0. 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0
1 1 1 0 1 1 1. 1 0 0. 0 0 1 1 1 1 0 1 1 1 0 1 1 0
0 0 0 1 0 0 0 0 0 0 1 0 0. 1 1 0 1 0 0 1. 0 1 1 0 

1 1 1 0 

 

1 1 1 1 

 

1 1 0 1 1 0 0 1 0 0 0 1 

 

0 0 0. 0
 7  8          

0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0  

1 1. 1 1 

 

0 0 0 0 

       

The goal is 
achieved in 

13 steps 
 

 

 
Figure 13 – An example of optimizing the solution process using the snake method 

Source: author's development 
 
When you get to the basic combination, the question arises if we need to enumerate 

cells with units or zeros. When enumerating cells with code «1» the process proved to be 
long, and enumerating of zeros quickly leads to the solution. It required 17 steps to solve the 
problem by the sign method, however the player has to timely detect the pre pre-final 
combination and «manually» interfere in the solution process. It is encouraging that the above 
methods were also suitable for matrices of size nm . However, solving the problem for 
matrices of higher dimension were not investigated in detail. 

 Input  1  2  3  4  5  
0.1 1 02 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1
1 1 03 1 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 
1 04 05 06 

 
0 0 0 0 

 
0 0 1 0 0 0 0 0 1 1 1 1 

 
0 0 0 0

 Basic  7  8  9  10  11  
0.1 02 03 04 1 1. 1 1 0 0 0. 0 1 1 1 1. 0 0 0 0 
1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0  
1 1 1 1 

 
0 1 1 1 

 
0 0 1 1 0 0 0 1 0 0 0 0 

 

The goal is 
achieved in 

10 steps 
 

 

 
 

Figure 14 - An example of optimizing the solution process of the snake method 
Source: author's development 

 
Conclusions. The results of the study showed that applying logical analysis to each 

combination in 4x4 and higher dimensionality matrices in order to find the optimal next step 
is a complex and inefficient process.  
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To solve the problem at hand it is necessary to find non-standard approaches such as 
the method of identifying distinct features and using them in the course of the algorithm 
development; the method for allocating cells with code «1» or «0» in the input matrix along 
with their enumeration rules and developing on this basis the rules for finding the successful 
sequence of actions (i.e. «stream» and «snake» methods). When optimizing these algorithms, 
it is necessary to analyze the current combinations and either timely interfere in the process 
(like in the sign method) or pre-process the input matrix in order to optimize the number of 
cells with code «0»  or «1» (like in the «snake» method). 
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